Search results
Results From The WOW.Com Content Network
The joule (/ dʒ uː l / JOOL, or / dʒ aʊ l / JOWL; symbol: J) is the unit of energy in the International System of Units (SI). [1] In terms of SI base units , one joule corresponds to one kilogram - square metre per square second (1 J = 1 kg⋅m 2 ⋅s −2 ).
A unit of electrical energy, particularly for utility bills, is the kilowatt-hour (kWh); [3] one kilowatt-hour is equivalent to 3.6 megajoules. Electricity usage is often given in units of kilowatt-hours per year or other periods. [4] This is a measurement of average power consumption, meaning the average rate at which energy is transferred ...
All the SI prefixes are commonly applied to the watt-hour: a kilowatt-hour (kWh) is 1,000 Wh; a megawatt-hour (MWh) is 1 million Wh; a milliwatt-hour (mWh) is 1/1,000 Wh and so on. The kilowatt-hour is commonly used by electrical energy providers for purposes of billing, since the monthly energy consumption of a typical residential customer ...
Energy; system unit code (alternative) symbol or abbrev. notes sample default conversion combinations SI: yottajoule: YJ YJ 1.0 YJ (2.8 × 10 17 kWh) zettajoule: ZJ ZJ 1.0 ZJ (2.8 × 10 14 kWh)
1 terawatt hour per year = 1 × 10 12 W·h / (365 days × 24 hours per day) ≈ 114 million watts, equivalent to approximately 114 megawatts of constant power output. The watt-second is a unit of energy, equal to the joule. One kilowatt hour is 3,600,000 watt seconds.
The Btu should not be confused with the Board of Trade Unit (BTU), an obsolete UK synonym for kilowatt hour (1 kW⋅h or 3,412 Btu). The Btu is often used to express the conversion-efficiency of heat into electrical energy in power plants. Figures are quoted in terms of the quantity of heat in Btu required to generate 1 kW⋅h of electrical energy.
Electric energy is most often measured either in joules (J), or in watt hours (W·h). [4] 1 W·s = 1 J 1 W·h = 3,600 W·s = 3,600 J 1 kWh = 3,600 kWs = 1,000 Wh = 3.6 million W·s = 3.6 million J. Electric and electronic devices consume electric energy to generate desired output (light, heat, motion, etc.).
Total mass-energy of 1 microgram of matter (25 kWh) 10 8 1×10 8 J: Kinetic energy of a 55 tonne aircraft at typical landing speed (59 m/s or 115 knots) [citation needed] 1.1×10 8 J: ≈ 1 therm, depending on the temperature [59] 1.1×10 8 J: ≈ 1 Tour de France, or ~90 hours [127] ridden at 5 W/kg [128] by a 65 kg rider [129] 7.3×10 8 J