Search results
Results From The WOW.Com Content Network
In mathematics, the term linear is used in two distinct senses for two different properties: . linearity of a function (or mapping);; linearity of a polynomial.; An example of a linear function is the function defined by () = (,) that maps the real line to a line in the Euclidean plane R 2 that passes through the origin.
One could also define both the second constant coefficient and the second function to be 0, where the domain of the second function is a superset of the first function, among other possibilities.) On the contrary, if we first prove the constant factor rule and the sum rule, we can prove linearity and the difference rule.
A constant function is also considered linear in this context, as it is a polynomial of degree zero or is the zero polynomial. Its graph, when there is only one variable, is a horizontal line. In this context, a function that is also a linear map (the other meaning) may be referred to as a homogeneous linear function or a linear form.
A linear function is a polynomial function in which the variable x has degree at most one: [2] = +. Such a function is called linear because its graph, the set of all points (, ()) in the Cartesian plane, is a line. The coefficient a is called the slope of the function and of the line (see below).
The functions whose graph is a line are generally called linear functions in the context of calculus. However, in linear algebra, a linear function is a function that maps a sum to the sum of the images of the summands. So, for this definition, the above function is linear only when c = 0, that is when the
The above procedure now is reversed to find the form of the function F(x) using its (assumed) known log–log plot. To find the function F, pick some fixed point (x 0, F 0), where F 0 is shorthand for F(x 0), somewhere on the straight line in the above graph, and further some other arbitrary point (x 1, F 1) on the same graph.
Linear interpolation on a data set (red points) consists of pieces of linear interpolants (blue lines). Linear interpolation on a set of data points (x 0, y 0), (x 1, y 1), ..., (x n, y n) is defined as piecewise linear, resulting from the concatenation of linear segment interpolants between each pair of data points.
The linear approximation of a function is the first order Taylor expansion around the point of interest. In the study of dynamical systems , linearization is a method for assessing the local stability of an equilibrium point of a system of nonlinear differential equations or discrete dynamical systems . [ 1 ]