Search results
Results From The WOW.Com Content Network
The weighted mean in this case is: ¯ = ¯ (=), (where the order of the matrix–vector product is not commutative), in terms of the covariance of the weighted mean: ¯ = (=), For example, consider the weighted mean of the point [1 0] with high variance in the second component and [0 1] with high variance in the first component.
The expected value of a random variable is the weighted average of the possible values it might take on, with the weights being the respective probabilities. More generally, the expected value of a function of a random variable is the probability-weighted average of the values the function takes on for each possible value of the random variable.
Kernel average smoother example. The idea of the kernel average smoother is the following. For each data point X 0, choose a constant distance size λ (kernel radius, or window width for p = 1 dimension), and compute a weighted average for all data points that are closer than to X 0 (the closer to X 0 points get higher weights).
In statistics, the weighted geometric mean is a generalization of the geometric mean using the weighted arithmetic mean. Given a sample = ...
A cell wall is a structural layer that surrounds some cell types, found immediately outside the cell membrane.It can be tough, flexible, and sometimes rigid. Primarily, it provides the cell with structural support, shape, protection, and functions as a selective barrier. [1]
We can see that the slope (tangent of angle) of the regression line is the weighted average of (¯) (¯) that is the slope (tangent of angle) of the line that connects the i-th point to the average of all points, weighted by (¯) because the further the point is the more "important" it is, since small errors in its position will affect the ...
In calculus, and especially multivariable calculus, the mean of a function is loosely defined as the average value of the function over its domain. In one variable, the mean of a function f(x) over the interval (a,b) is defined by: [1] ¯ = ().
The structure function, like the fragmentation function, is a probability density function in physics. It is somewhat analogous to the structure factor in solid-state physics , and the form factor (quantum field theory) .