Ads
related to: wallpaper patterns geometry examples for kids
Search results
Results From The WOW.Com Content Network
A wallpaper group (or plane symmetry group or plane crystallographic group) is a mathematical classification of a two-dimensional repetitive pattern, based on the symmetries in the pattern. Such patterns occur frequently in architecture and decorative art , especially in textiles , tiles , and wallpaper .
The 17 wallpaper groups, with finite fundamental domains, are given by International notation, orbifold notation, and Coxeter notation, classified by the 5 Bravais lattices in the plane: square, oblique (parallelogrammatic), hexagonal (equilateral triangular), rectangular (centered rhombic), and rhombic (centered rectangular).
A wallpaper group or plane symmetry group or plane crystallographic group is a mathematical classification of a two-dimensional repetitive pattern, based on the symmetries in the pattern. Such patterns occur frequently in architecture and decorative art. There are 17 possible distinct groups.
The honeycomb is a well-known example of tessellation in nature with its hexagonal cells. [82] In botany, the term "tessellate" describes a checkered pattern, for example on a flower petal, tree bark, or fruit. Flowers including the fritillary, [83] and some species of Colchicum, are characteristically tessellate. [84]
Examples of frieze patterns. In mathematics, a frieze or frieze pattern is a two-dimensional design that repeats in one direction. The term is derived from architecture and decorative arts, where such repeating patterns are often used. (See frieze.) Frieze patterns can be classified into seven types according to their symmetries.
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!