Search results
Results From The WOW.Com Content Network
Excel maintains 15 figures in its numbers, but they are not always accurate; mathematically, the bottom line should be the same as the top line, in 'fp-math' the step '1 + 1/9000' leads to a rounding up as the first bit of the 14 bit tail '10111000110010' of the mantissa falling off the table when adding 1 is a '1', this up-rounding is not undone when subtracting the 1 again, since there is no ...
This is typically not symmetrical across phases. By transposing, the overall capacitance for the whole line is approximately balanced. Transposing also reduce effects to communication circuits. [1] Wire transposition on top of pole. A transposing scheme is a pattern by which the conductors of overhead power lines are transposed at transposing ...
The ability to chain formulas together is what gives a spreadsheet its power. Many problems can be broken down into a series of individual mathematical steps, and these can be assigned to individual formulas in cells. Some of these formulas can apply to ranges as well, like the SUM function that adds up all the numbers within a range.
Excel offers many user interface tweaks over the earliest electronic spreadsheets; however, the essence remains the same as in the original spreadsheet software, VisiCalc: the program displays cells organized in rows and columns, and each cell may contain data or a formula, with relative or absolute references to other cells. Excel 2.0 for ...
The conjugate transpose of a matrix with real entries reduces to the transpose of , as the conjugate of a real number is the number itself. The conjugate transpose can be motivated by noting that complex numbers can be usefully represented by 2 × 2 {\displaystyle 2\times 2} real matrices, obeying matrix addition and multiplication: [ 3 ]
A linear equation in line coordinates has the form al + bm + c = 0, where a, b and c are constants. Suppose (l, m) is a line that satisfies this equation.If c is not 0 then lx + my + 1 = 0, where x = a/c and y = b/c, so every line satisfying the original equation passes through the point (x, y).
Transposition, producing the transpose of a matrix A T, which is computed by swapping columns for rows in the matrix A; Transpose of a linear map; Transposition (logic), a rule of replacement in philosophical logic; Transpose relation, another name for converse relation
In linear algebra, the transpose of a matrix is an operator which flips a matrix over its diagonal; that is, it switches the row and column indices of the matrix A by producing another matrix, often denoted by A T (among other notations). [1] The transpose of a matrix was introduced in 1858 by the British mathematician Arthur Cayley. [2]