Search results
Results From The WOW.Com Content Network
Apothem of a hexagon Graphs of side, s; apothem, a; and area, A of regular polygons of n sides and circumradius 1, with the base, b of a rectangle with the same area. The green line shows the case n = 6. The apothem (sometimes abbreviated as apo [1]) of a regular polygon is a line
Some regular polygons are easy to construct with compass and straightedge; other regular polygons are not constructible at all. The ancient Greek mathematicians knew how to construct a regular polygon with 3, 4, or 5 sides, [11]: p. xi and they knew how to construct a regular polygon with double the number of sides of a given regular polygon.
A polygon with holes is an area-connected or multiply-connected planar polygon with one external boundary and one or more interior boundaries (holes). A complex polygon is a configuration analogous to an ordinary polygon, which exists in the complex plane of two real and two imaginary dimensions.
A convex regular polygon having n sides is denoted by {n}. So an equilateral triangle is {3}, a square {4}, and so on indefinitely. A regular n-sided star polygon which winds m times around its centre is denoted by the fractional value {n/m}, where n and m are co-prime, so a regular pentagram is {5/2}.
The polytopes of rank 2 (2-polytopes) are called polygons. Regular polygons are equilateral and cyclic. A p-gonal regular polygon is represented by Schläfli symbol {p}. Many sources only consider convex polygons, but star polygons, like the pentagram, when considered, can also be regular. They use the same vertices as the convex forms, but ...
The apothem is half the cotangent of /, and the area of each of the 14 small triangles is one-fourth of the apothem. The area of a regular heptagon inscribed in a circle of radius R is 7 R 2 2 sin 2 π 7 , {\displaystyle {\tfrac {7R^{2}}{2}}\sin {\tfrac {2\pi }{7}},} while the area of the circle itself is π R 2 ; {\displaystyle \pi R^{2 ...
The area of a regular decagon of side length a is given by: [3] = = + In terms of the apothem r (see also inscribed figure), the area is: = = In terms of the circumradius R, the area is:
A regular icositrigon has internal angles of degrees, with an area of = = , where is side length and is the inradius, or apothem. The regular icositrigon is not constructible with a compass and straightedge or angle trisection, [1] on account of the number 23 being neither a Fermat nor Pierpont prime.