When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Singular value decomposition - Wikipedia

    en.wikipedia.org/wiki/Singular_value_decomposition

    The singular value decomposition is very general in the sense that it can be applied to any ⁠ ⁠ matrix, whereas eigenvalue decomposition can only be applied to square diagonalizable matrices. Nevertheless, the two decompositions are related.

  3. Eigendecomposition of a matrix - Wikipedia

    en.wikipedia.org/wiki/Eigendecomposition_of_a_matrix

    Let A be a square n × n matrix with n linearly independent eigenvectors q i (where i = 1, ..., n).Then A can be factored as = where Q is the square n × n matrix whose i th column is the eigenvector q i of A, and Λ is the diagonal matrix whose diagonal elements are the corresponding eigenvalues, Λ ii = λ i.

  4. Singular value - Wikipedia

    en.wikipedia.org/wiki/Singular_value

    The singular values are non-negative real numbers, usually listed in decreasing order (σ 1 (T), σ 2 (T), …). The largest singular value σ 1 (T) is equal to the operator norm of T (see Min-max theorem). Visualization of a singular value decomposition (SVD) of a 2-dimensional, real shearing matrix M.

  5. Principal component analysis - Wikipedia

    en.wikipedia.org/wiki/Principal_component_analysis

    The truncation of a matrix M or T using a truncated singular value decomposition in this way produces a truncated matrix that is the nearest possible matrix of rank L to the original matrix, in the sense of the difference between the two having the smallest possible Frobenius norm, a result known as the Eckart–Young theorem [1936].

  6. Matrix decomposition - Wikipedia

    en.wikipedia.org/wiki/Matrix_decomposition

    Also known as: UTV decomposition, ULV decomposition, URV decomposition. Applicable to: m-by-n matrix A. Decomposition: =, where T is a triangular matrix, and U and V are unitary matrices. Comment: Similar to the singular value decomposition and to the Schur decomposition.

  7. Schmidt decomposition - Wikipedia

    en.wikipedia.org/wiki/Schmidt_decomposition

    In linear algebra, the Schmidt decomposition (named after its originator Erhard Schmidt) refers to a particular way of expressing a vector in the tensor product of two inner product spaces. It has numerous applications in quantum information theory , for example in entanglement characterization and in state purification , and plasticity .

  8. Numerical linear algebra - Wikipedia

    en.wikipedia.org/wiki/Numerical_linear_algebra

    The singular value decomposition of a matrix is = where U and V are unitary, and is diagonal.The diagonal entries of are called the singular values of A.Because singular values are the square roots of the eigenvalues of , there is a tight connection between the singular value decomposition and eigenvalue decompositions.

  9. Normal matrix - Wikipedia

    en.wikipedia.org/wiki/Normal_matrix

    The left and right singular vectors in the singular value decomposition of a ... is the diagonal matrix of eigenvalues. Likewise, if two normal matrices commute and ...