When.com Web Search

  1. Ad

    related to: singular value decomposition and eigenvalues practice

Search results

  1. Results From The WOW.Com Content Network
  2. Eigendecomposition of a matrix - Wikipedia

    en.wikipedia.org/wiki/Eigendecomposition_of_a_matrix

    Let A be a square n × n matrix with n linearly independent eigenvectors q i (where i = 1, ..., n).Then A can be factored as = where Q is the square n × n matrix whose i th column is the eigenvector q i of A, and Λ is the diagonal matrix whose diagonal elements are the corresponding eigenvalues, Λ ii = λ i.

  3. Singular value decomposition - Wikipedia

    en.wikipedia.org/wiki/Singular_value_decomposition

    Specifically, the singular value decomposition of an complex matrix ⁠ ⁠ is a factorization of the form =, where ⁠ ⁠ is an ⁠ ⁠ complex unitary matrix, is an rectangular diagonal matrix with non-negative real numbers on the diagonal, ⁠ ⁠ is an complex unitary matrix, and is the conjugate transpose of ⁠ ⁠. Such decomposition ...

  4. Singular value - Wikipedia

    en.wikipedia.org/wiki/Singular_value

    The largest singular value σ 1 (T) is equal to the operator norm of T (see Min-max theorem). Visualization of a singular value decomposition (SVD) of a 2-dimensional, real shearing matrix M. First, we see the unit disc in blue together with the two canonical unit vectors. We then see the action of M, which distorts the disc to an ellipse.

  5. Principal component analysis - Wikipedia

    en.wikipedia.org/wiki/Principal_component_analysis

    Comparison with the eigenvector factorization of X T X establishes that the right singular vectors W of X are equivalent to the eigenvectors of X T X, while the singular values σ (k) of are equal to the square-root of the eigenvalues λ (k) of X T X. Using the singular value decomposition the score matrix T can be written

  6. Eigenvalues and eigenvectors - Wikipedia

    en.wikipedia.org/wiki/Eigenvalues_and_eigenvectors

    The corresponding eigenvalue, characteristic value, or characteristic root is the multiplying factor (possibly negative). Geometrically, vectors are multi-dimensional quantities with magnitude and direction, often pictured as arrows. A linear transformation rotates, stretches, or shears the vectors upon which it acts. Its eigenvectors are those ...

  7. Jacobi eigenvalue algorithm - Wikipedia

    en.wikipedia.org/wiki/Jacobi_eigenvalue_algorithm

    The 2-norm of a matrix A is the norm based on the Euclidean vectornorm; that is, the largest value ‖ ‖ when x runs through all vectors with ‖ ‖ =. It is the largest singular value of . In case of a symmetric matrix it is the largest absolute value of its eigenvectors and thus equal to its spectral radius.

  8. Category:Singular value decomposition - Wikipedia

    en.wikipedia.org/wiki/Category:Singular_value...

    Pages in category "Singular value decomposition" The following 13 pages are in this category, out of 13 total. ... Eigenvalues and eigenvectors; G.

  9. Generalized singular value decomposition - Wikipedia

    en.wikipedia.org/wiki/Generalized_singular_value...

    In linear algebra, the generalized singular value decomposition (GSVD) is the name of two different techniques based on the singular value decomposition (SVD).The two versions differ because one version decomposes two matrices (somewhat like the higher-order or tensor SVD) and the other version uses a set of constraints imposed on the left and right singular vectors of a single-matrix SVD.