Ad
related to: hearing screening results interpretation
Search results
Results From The WOW.Com Content Network
This prevents the non-test ear from detecting the test signal presented to the test ear. The threshold of the test ear is measured at the same time as presenting the masking noise to the non-test ear. Thus, thresholds obtained when masking has been applied, provide an accurate representation of the true hearing threshold level of the test ear. [13]
Thus, a "positive" result indicates the healthy state, in contrast to many other medical tests. Therefore, some prefer to avoid using the terms "positive" or "negative", and simply state if the test was normal or abnormal. For example: "Rinne's test was abnormal in the right ear, with bone conduction greater than air conduction".
The Weber and the Rinne test (/ ˈ r ɪ n ə / RIN-ə) [6] are typically performed together when the results of each combined to determine the location and nature of any hearing losses detected. In the Weber test a vibrating tuning fork (Typically 256 Hz [7] or 512 Hz [8] used for Weber vibration test; 512 Hz used for Rinne hearing test) is ...
A pure tone audiometry hearing test is the gold standard for evaluation of hearing loss or disability. [medical citation needed] Other types of hearing tests also generate graphs or tables of results that may be loosely called 'audiograms', but the term is universally used to refer to the result of a pure tone audiometry hearing test.
The result of the test is an audiogram diagram which plots a person's hearing sensitivity at the tested frequencies. On an audiogram an "x" plot represents the softest threshold heard at each specific frequency in the left ear, and an "o" plot represents the softest threshold heard at each specific frequency in the right ear.
Hearing protector fit-testing is a method that measures the degree of noise reduction obtained from an individual wearing a particular hearing protection device (HPD) - for example, a noise canceling earplug or earmuff. Fit testing is necessary because noise attenuation varies across individuals.
The tone decay test (also known as the threshold tone decay test or TTDT) is used in audiology to detect and measure auditory fatigue. It was developed by Raymond Carhart in 1957. In people with normal hearing, a tone whose intensity is only slightly above their absolute threshold of hearing can be heard continuously for 60 seconds.
Graph showing a typical Auditory Brainstem Response. The auditory brainstem response (ABR), also called brainstem evoked response audiometry (BERA) or brainstem auditory evoked potentials (BAEPs) or brainstem auditory evoked responses (BAERs) [1] [2] is an auditory evoked potential extracted from ongoing electrical activity in the brain and recorded via electrodes placed on the scalp.