Search results
Results From The WOW.Com Content Network
Euclid (/ ˈ j uː k l ɪ d /; Ancient Greek: Εὐκλείδης; fl. 300 BC) was an ancient Greek mathematician active as a geometer and logician. [2] Considered the "father of geometry", [3] he is chiefly known for the Elements treatise, which established the foundations of geometry that largely dominated the field until the early 19th century.
Although the foundations of his work were put in place by Euclid, his work, unlike Euclid's, is believed to have been entirely original. [23] He proved equations for the volumes and areas of various figures in two and three dimensions, and enunciated the Archimedean property of finite numbers.
Euclid's axiomatic approach and constructive methods were widely influential. Many of Euclid's propositions were constructive, demonstrating the existence of some figure by detailing the steps he used to construct the object using a compass and straightedge. His constructive approach appears even in his geometry's postulates, as the first and ...
Data (Greek: Δεδομένα, Dedomena) is a work by Euclid. It deals with the nature and implications of "given" information in geometrical problems. The subject matter is closely related to the first four books of Euclid's Elements.
Similar to Euclid's much more famous work on geometry, Elements, Optics begins with a small number of definitions and postulates, which are then used to prove, by deductive reasoning, a body of geometric propositions about vision.
Euclid gave the definition of parallel lines in Book I, Definition 23 [2] just before the five postulates. [3] Euclidean geometry is the study of geometry that satisfies all of Euclid's axioms, including the parallel postulate. The postulate was long considered to be obvious or inevitable, but proofs were elusive.
Not all Euclid numbers are prime. E 6 = 13# + 1 = 30031 = 59 × 509 is the first composite Euclid number. Every Euclid number is congruent to 3 modulo 4 since the primorial of which it is composed is twice the product of only odd primes and thus congruent to 2 modulo 4. This property implies that no Euclid number can be a square.
To address these issues in Euclid's work, later authors have either attempted to fill in the holes in Euclid's presentation – the most notable of these attempts is due to D. Hilbert – or to organize the axiom system around § different concepts, as G.D. Birkhoff has done.