When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Net force - Wikipedia

    en.wikipedia.org/wiki/Net_force

    In mechanics, the net force is the sum of all the forces acting on an object. For example, if two forces are acting upon an object in opposite directions, and one force is greater than the other, the forces can be replaced with a single force that is the difference of the greater and smaller force. That force is the net force. [1]

  3. Minkowski addition - Wikipedia

    en.wikipedia.org/wiki/Minkowski_addition

    Minkowski sums act linearly on the perimeter of two-dimensional convex bodies: the perimeter of the sum equals the sum of perimeters. Additionally, if K {\textstyle K} is (the interior of) a curve of constant width , then the Minkowski sum of K {\textstyle K} and of its 180° rotation is a disk.

  4. Vector notation - Wikipedia

    en.wikipedia.org/wiki/Vector_notation

    The cross product of two vectors u and v would be represented as: By some conventions (e.g. in France and in some areas of higher mathematics), this is also denoted by a wedge, [ 12 ] which avoids confusion with the wedge product since the two are functionally equivalent in three dimensions: u ∧ v {\displaystyle \mathbf {u} \wedge \mathbf {v} }

  5. Direct sum - Wikipedia

    en.wikipedia.org/wiki/Direct_sum

    A similar process can be used to form the direct sum of two vector spaces or two modules. We can also form direct sums with any finite number of summands, for example A ⊕ B ⊕ C {\displaystyle A\oplus B\oplus C} , provided A , B , {\displaystyle A,B,} and C {\displaystyle C} are the same kinds of algebraic structures (e.g., all abelian ...

  6. Vector space - Wikipedia

    en.wikipedia.org/wiki/Vector_space

    In this context, the elements of V are commonly called vectors, and the elements of F are called scalars. [2] The binary operation, called vector addition or simply addition assigns to any two vectors v and w in V a third vector in V which is commonly written as v + w, and called the sum of these two vectors.

  7. Vector algebra relations - Wikipedia

    en.wikipedia.org/wiki/Vector_algebra_relations

    The following are important identities in vector algebra.Identities that only involve the magnitude of a vector ‖ ‖ and the dot product (scalar product) of two vectors A·B, apply to vectors in any dimension, while identities that use the cross product (vector product) A×B only apply in three dimensions, since the cross product is only defined there.

  8. Dyadics - Wikipedia

    en.wikipedia.org/wiki/Dyadics

    The dyadic product takes in two vectors and returns a second order tensor called a dyadic in this context. A dyadic can be used to contain physical or geometric information, although in general there is no direct way of geometrically interpreting it. The dyadic product is distributive over vector addition, and associative with scalar ...

  9. Tangential and normal components - Wikipedia

    en.wikipedia.org/wiki/Tangential_and_normal...

    Illustration of tangential and normal components of a vector to a surface. In mathematics, given a vector at a point on a curve, that vector can be decomposed uniquely as a sum of two vectors, one tangent to the curve, called the tangential component of the vector, and another one perpendicular to the curve, called the normal component of the vector.