When.com Web Search

  1. Ad

    related to: multiplication rule for dependent events pdf

Search results

  1. Results From The WOW.Com Content Network
  2. Independence (probability theory) - Wikipedia

    en.wikipedia.org/wiki/Independence_(probability...

    Independence is a fundamental notion in probability theory, as in statistics and the theory of stochastic processes.Two events are independent, statistically independent, or stochastically independent [1] if, informally speaking, the occurrence of one does not affect the probability of occurrence of the other or, equivalently, does not affect the odds.

  3. Chain rule (probability) - Wikipedia

    en.wikipedia.org/wiki/Chain_rule_(probability)

    This rule allows one to express a joint probability in terms of only conditional probabilities. [4] The rule is notably used in the context of discrete stochastic processes and in applications, e.g. the study of Bayesian networks, which describe a probability distribution in terms of conditional probabilities.

  4. Distribution of the product of two random variables - Wikipedia

    en.wikipedia.org/wiki/Distribution_of_the...

    A product distribution is a probability distribution constructed as the distribution of the product of random variables having two other known distributions. Given two statistically independent random variables X and Y, the distribution of the random variable Z that is formed as the product = is a product distribution.

  5. Law of total probability - Wikipedia

    en.wikipedia.org/wiki/Law_of_total_probability

    [citation needed] One author uses the terminology of the "Rule of Average Conditional Probabilities", [4] while another refers to it as the "continuous law of alternatives" in the continuous case. [5] This result is given by Grimmett and Welsh [6] as the partition theorem, a name that they also give to the related law of total expectation.

  6. Conditional probability - Wikipedia

    en.wikipedia.org/wiki/Conditional_probability

    In this situation, the event A can be analyzed by a conditional probability with respect to B. If the event of interest is A and the event B is known or assumed to have occurred, "the conditional probability of A given B", or "the probability of A under the condition B", is usually written as P(A|B) [2] or occasionally P B (A).

  7. Rule of product - Wikipedia

    en.wikipedia.org/wiki/Rule_of_product

    In combinatorics, the rule of product or multiplication principle is a basic counting principle (a.k.a. the fundamental principle of counting). Stated simply, it is the intuitive idea that if there are a ways of doing something and b ways of doing another thing, then there are a · b ways of performing both actions.

  8. Conditional independence - Wikipedia

    en.wikipedia.org/wiki/Conditional_independence

    A set of rules governing statements of conditional independence have been derived from the basic definition. [ 4 ] [ 5 ] These rules were termed " Graphoid Axioms" by Pearl and Paz, [ 6 ] because they hold in graphs, where X ⊥ ⊥ A ∣ B {\displaystyle X\perp \!\!\!\perp A\mid B} is interpreted to mean: "All paths from X to A are intercepted ...

  9. Bayes' theorem - Wikipedia

    en.wikipedia.org/wiki/Bayes'_theorem

    If events A 1, A 2, ..., are mutually exclusive and exhaustive, i.e., one of them is certain to occur but no two can occur together, we can determine the proportionality constant by using the fact that their probabilities must add up to one. For instance, for a given event A, the event A itself and its complement ¬A are