Search results
Results From The WOW.Com Content Network
The method of false position provides an exact solution for linear functions, but more direct algebraic techniques have supplanted its use for these functions. However, in numerical analysis, double false position became a root-finding algorithm used in iterative numerical approximation techniques.
In numerical analysis, Ridders' method is a root-finding algorithm based on the false position method and the use of an exponential function to successively approximate a root of a continuous function (). The method is due to C. Ridders.
False position is similar to the secant method, except that, instead of retaining the last two points, it makes sure to keep one point on either side of the root. The false position method can be faster than the bisection method and will never diverge like the secant method.
The secant method does not require or guarantee that the root remains bracketed by sequential iterates, like the bisection method does, and hence it does not always converge. The false position method (or regula falsi) uses the same formula as the secant method.
The term "method of false position" has consistently been more common than "false position method" or "rule of false position" during the 20-21st centuries, according to Google ngrams. This article should be moved to Method of false position .
There is more than one method for doing division, and the method presented here has the advantage that the final result cannot be off-scale, because one has a choice of using the 1 at either end. With more complex calculations involving multiple factors in the numerator and denominator of an expression, movement of the scales can be minimized ...
This is the Euler method (or forward Euler method, in contrast with the backward Euler method, to be described below). The method is named after Leonhard Euler who described it in 1768. The Euler method is an example of an explicit method. This means that the new value y n+1 is defined in terms of things that are already known, like y n.
This method can even work for objects with holes, which can be accounted for as negative masses. [19] A direct development of the planimeter known as an integraph, or integerometer, can be used to establish the position of the centroid or center of mass of an irregular two-dimensional shape. This method can be applied to a shape with an ...