Search results
Results From The WOW.Com Content Network
Like the integral of the first kind, the complete elliptic integral of the second kind can be computed very efficiently using the arithmetic–geometric mean. [1] Define sequences a n and g n, where a 0 = 1, g 0 = √ 1 − k 2 = k ′ and the recurrence relations a n + 1 = a n + g n / 2 , g n + 1 = √ a n g n hold.
An ellipse has a simple algebraic solution for its area, but for its perimeter (also known as circumference), integration is required to obtain an exact solution. Analytically , the equation of a standard ellipse centered at the origin with width 2 a {\displaystyle 2a} and height 2 b {\displaystyle 2b} is: x 2 a 2 + y 2 b 2 = 1. {\displaystyle ...
The area of a two-dimensional region can be calculated using the aforementioned definite integral. [50] The volume of a three-dimensional object such as a disc or washer can be computed by disc integration using the equation for the volume of a cylinder, , where is the radius.
In more recent years, computer programs have been used to find and calculate more precise approximations of the perimeter of an ellipse. In an online video about the perimeter of an ellipse, recreational mathematician and YouTuber Matt Parker, using a computer program, calculated numerous approximations for the perimeter of an ellipse. [6]
The incomplete elliptic integral of the first kind is defined as, (,) = (),the second kind as (,) = (),and the third kind as (,,) = ( ()) ().The argument n of the third kind of integral is known as the characteristic, which in different notational conventions can appear as either the first, second or third argument of Π and furthermore is sometimes defined with the opposite sign.
The square gets sent to a rectangle circumscribing the ellipse. The ratio of the area of the circle to the square is π /4, which means the ratio of the ellipse to the rectangle is also π /4. Suppose a and b are the lengths of the major and minor axes of the ellipse. Since the area of the rectangle is ab, the area of the ellipse is π ab/4.
In general, the arguments x, y, z of Carlson's integrals may not be real and negative, as this would place a branch point on the path of integration, making the integral ambiguous. However, if the second argument of R C {\displaystyle R_{C}} , or the fourth argument, p, of R J {\displaystyle R_{J}} is negative, then this results in a simple ...
Except for a comment by Landen [14] his ideas were not pursued until 1786, when Legendre published his paper Mémoires sur les intégrations par arcs d’ellipse. [15] Legendre subsequently studied elliptic integrals and called them elliptic functions. Legendre introduced a three-fold classification –three kinds– which was a crucial ...