Search results
Results From The WOW.Com Content Network
Eigenvalues and eigenvectors give rise to many closely related mathematical concepts, and the prefix eigen-is applied liberally when naming them: The set of all eigenvectors of a linear transformation, each paired with its corresponding eigenvalue, is called the eigensystem of that transformation. [7] [8]
Let A be a square n × n matrix with n linearly independent eigenvectors q i (where i = 1, ..., n).Then A can be factored as = where Q is the square n × n matrix whose i th column is the eigenvector q i of A, and Λ is the diagonal matrix whose diagonal elements are the corresponding eigenvalues, Λ ii = λ i.
The index j represents the jth eigenvalue or eigenvector and runs from 1 to . Assuming the equation is defined on the domain x ∈ [ 0 , L ] {\displaystyle x\in [0,L]} , the following are the eigenvalues and normalized eigenvectors.
Given an n × n square matrix A of real or complex numbers, an eigenvalue λ and its associated generalized eigenvector v are a pair obeying the relation [1] =,where v is a nonzero n × 1 column vector, I is the n × n identity matrix, k is a positive integer, and both λ and v are allowed to be complex even when A is real.l When k = 1, the vector is called simply an eigenvector, and the pair ...
In mathematics, an eigenvalue perturbation problem is that of finding the eigenvectors and eigenvalues of a system = that is perturbed from one with known eigenvectors and eigenvalues =. This is useful for studying how sensitive the original system's eigenvectors and eigenvalues x 0 i , λ 0 i , i = 1 , … n {\displaystyle x_{0i},\lambda _{0i ...
All three of the Pauli matrices can be compacted into a single expression: = (+), where the solution to i 2 = −1 is the "imaginary unit", and δ jk is the Kronecker delta, which equals +1 if j = k and 0 otherwise.
If the set of matrices considered is restricted to Hermitian matrices without multiple eigenvalues, then commutativity is transitive, as a consequence of the characterization in terms of eigenvectors. Lie's theorem, which shows that any representation of a solvable Lie algebra is simultaneously upper triangularizable may be viewed as a ...
In linear algebra, a defective matrix is a square matrix that does not have a complete basis of eigenvectors, and is therefore not diagonalizable. In particular, an n × n {\displaystyle n\times n} matrix is defective if and only if it does not have n {\displaystyle n} linearly independent eigenvectors. [ 1 ]