When.com Web Search

  1. Ad

    related to: 3 examples of pythagorean triples theorem problems worksheet solutions 2

Search results

  1. Results From The WOW.Com Content Network
  2. Pythagorean triple - Wikipedia

    en.wikipedia.org/wiki/Pythagorean_triple

    A primitive Pythagorean triple is one in which a, b and c are coprime (that is, they have no common divisor larger than 1). [1] For example, (3, 4, 5) is a primitive Pythagorean triple whereas (6, 8, 10) is not. Every Pythagorean triple can be scaled to a unique primitive Pythagorean triple by dividing (a, b, c) by their greatest common divisor ...

  3. Pythagorean theorem - Wikipedia

    en.wikipedia.org/wiki/Pythagorean_theorem

    A Pythagorean triple has three positive integers a, b, and c, such that a 2 + b 2 = c 2. In other words, a Pythagorean triple represents the lengths of the sides of a right triangle where all three sides have integer lengths. [1] Such a triple is commonly written (a, b, c). Some well-known examples are (3, 4, 5) and (5, 12, 13).

  4. Boolean Pythagorean triples problem - Wikipedia

    en.wikipedia.org/wiki/Boolean_Pythagorean...

    The problem asks if it is possible to color each of the positive integers either red or blue, so that no Pythagorean triple of integers a, b, c, satisfying + = are all the same color. For example, in the Pythagorean triple 3, 4, and 5 ( 3 2 + 4 2 = 5 2 {\displaystyle 3^{2}+4^{2}=5^{2}} ), if 3 and 4 are colored red, then 5 must be colored blue.

  5. Formulas for generating Pythagorean triples - Wikipedia

    en.wikipedia.org/wiki/Formulas_for_generating...

    Wade and Wade [17] first introduced the categorization of Pythagorean triples by their height, defined as c − b, linking 3,4,5 to 5,12,13 and 7,24,25 and so on. McCullough and Wade [18] extended this approach, which produces all Pythagorean triples when k > h √ 2 /d: Write a positive integer h as pq 2 with p square-free and q positive.

  6. Plimpton 322 - Wikipedia

    en.wikipedia.org/wiki/Plimpton_322

    This table lists two of the three numbers in what are now called Pythagorean triples, i.e., integers a, b, and c satisfying a 2 + b 2 = c 2. From a modern perspective, a method for constructing such triples is a significant early achievement, known long before the Greek and Indian mathematicians discovered solutions to this problem. There has ...

  7. Glossary of number theory - Wikipedia

    en.wikipedia.org/wiki/Glossary_of_number_theory

    Fermat's last theorem Fermat's last theorem, one of the most famous and difficult to prove theorems in number theory, states that for any integer n > 2, the equation a n + b n = c n has no positive integer solutions. Fermat's little theorem Fermat's little theorem field extension A field extension L/K is a pair of fields K and L such that K is ...

  8. Tree of primitive Pythagorean triples - Wikipedia

    en.wikipedia.org/wiki/Tree_of_primitive...

    This approach relies on the standard formula for generating any primitive Pythagorean triple from a half-angle tangent. Specifically one writes t = n / m = b / (a + c), where t is the tangent of half of the interior angle that is opposite to the side of length b. The root node of the tree is t = 1/2, which is for the primitive Pythagorean ...

  9. Euler brick - Wikipedia

    en.wikipedia.org/wiki/Euler_brick

    Euler found at least two parametric solutions to the problem, but neither gives all solutions. [3] An infinitude of Euler bricks can be generated with Saunderson's [4] parametric formula. Let (u, v, w) be a Pythagorean triple (that is, u 2 + v 2 = w 2.) Then [1]: 105 the edges