Search results
Results From The WOW.Com Content Network
The condition J F ≠ 0 is related to the inverse function theorem in multivariable calculus. In fact for smooth functions (and so in particular for polynomials) a smooth local inverse function to F exists at every point where J F is non-zero. For example, the map x → x + x 3 has a smooth global inverse, but the inverse is not polynomial.
Functions that maximize or minimize functionals may be found using the Euler–Lagrange equation of the calculus of variations. A simple example of such a problem is to find the curve of shortest length connecting two points. If there are no constraints, the solution is a straight line between the points. However, if the curve is constrained to ...
The Mandelbrot set, one of the most famous examples of mathematical visualization.. Mathematical phenomena can be understood and explored via visualization.Classically, this consisted of two-dimensional drawings or building three-dimensional models (particularly plaster models in the 19th and early 20th century).
The curl of a vector field F, denoted by curl F, or , or rot F, is an operator that maps C k functions in R 3 to C k−1 functions in R 3, and in particular, it maps continuously differentiable functions R 3 → R 3 to continuous functions R 3 → R 3. It can be defined in several ways, to be mentioned below:
However, the exponential function is a holomorphic function with a nonzero derivative, but is not one-to-one since it is periodic. [ 2 ] The Riemann mapping theorem , one of the profound results of complex analysis , states that any non-empty open simply connected proper subset of C {\displaystyle \mathbb {C} } admits a bijective conformal map ...
The tangent half-angle substitution parametrizes the unit circle centered at (0, 0). Instead of +∞ and −∞, we have only one ∞, at both ends of the real line. That is often appropriate when dealing with rational functions and with trigonometric functions. (This is the one-point compactification of the line.)
The book advocates replacing the usual basic quantities of trigonometry, Euclidean distance and angle measure, by squared distance and the square of the sine of the angle, respectively. This is logically equivalent to the standard development (as the replacement quantities can be expressed in terms of the standard ones and vice versa).
A transversal produces 8 angles, as shown in the graph at the above left: 4 with each of the two lines, namely α, β, γ and δ and then α 1, β 1, γ 1 and δ 1; and; 4 of which are interior (between the two lines), namely α, β, γ 1 and δ 1 and 4 of which are exterior, namely α 1, β 1, γ and δ.