When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Hyperbolic functions - Wikipedia

    en.wikipedia.org/wiki/Hyperbolic_functions

    Circle and hyperbola tangent at (1,1) display geometry of circular functions in terms of circular sector area u and hyperbolic functions depending on hyperbolic sector area u. The hyperbolic functions represent an expansion of trigonometry beyond the circular functions. Both types depend on an argument, either circular angle or hyperbolic angle.

  3. Hyperbola - Wikipedia

    en.wikipedia.org/wiki/Hyperbola

    Hyperbola: the midpoints of parallel chords lie on a line. Hyperbola: the midpoint of a chord is the midpoint of the corresponding chord of the asymptotes. The midpoints of parallel chords of a hyperbola lie on a line through the center (see diagram). The points of any chord may lie on different branches of the hyperbola.

  4. Matrix representation of conic sections - Wikipedia

    en.wikipedia.org/wiki/Matrix_representation_of...

    A parabola, being tangent to the line at infinity, would have its center being a point on the line at infinity. Hyperbolas intersect the line at infinity in two distinct points and the polar lines of these points are the asymptotes of the hyperbola and are the tangent lines to the hyperbola at these points of infinity. Also, the polar line of a ...

  5. Conic section - Wikipedia

    en.wikipedia.org/wiki/Conic_section

    It follows dually that a line conic has two of its lines through every point and any envelope of lines with this property is a line conic. At every point of a point conic there is a unique tangent line, and dually, on every line of a line conic there is a unique point called a point of contact. An important theorem states that the tangent lines ...

  6. Confocal conic sections - Wikipedia

    en.wikipedia.org/wiki/Confocal_conic_sections

    Considering the pencils of confocal ellipses and hyperbolas (see lead diagram) one gets from the geometrical properties of the normal and tangent at a point (the normal of an ellipse and the tangent of a hyperbola bisect the angle between the lines to the foci). Any ellipse of the pencil intersects any hyperbola orthogonally (see diagram).

  7. Implicit curve - Wikipedia

    en.wikipedia.org/wiki/Implicit_curve

    However, the implicit function theorem gives conditions under which an implicit curve locally is given by the graph of a function (so in particular it has no self-intersections). If the defining relations are sufficiently smooth then, in such regions, implicit curves have well defined slopes, tangent lines, normal vectors, and curvature.

  8. Analytic geometry - Wikipedia

    en.wikipedia.org/wiki/Analytic_geometry

    In geometry, the tangent line (or simply tangent) to a plane curve at a given point is the straight line that "just touches" the curve at that point. Informally, it is a line through a pair of infinitely close points on the curve.

  9. Conjugate hyperbola - Wikipedia

    en.wikipedia.org/wiki/Conjugate_hyperbola

    In geometry, a conjugate hyperbola to a given hyperbola shares the same asymptotes but lies in the opposite two sectors of the plane compared to the original hyperbola. A hyperbola and its conjugate may be constructed as conic sections obtained from an intersecting plane that meets tangent double cones sharing the same apex .