Search results
Results From The WOW.Com Content Network
In geometry, a decagon (from the Greek δέκα déka and γωνία gonía, "ten angles") is a ten-sided polygon or 10-gon. [1] The total sum of the interior angles of a simple decagon is 1440°. Regular decagon
The interior angle concept can be extended in a consistent way to crossed polygons such as star polygons by using the concept of directed angles.In general, the interior angle sum in degrees of any closed polygon, including crossed (self-intersecting) ones, is then given by 180(n–2k)°, where n is the number of vertices, and the strictly positive integer k is the number of total (360 ...
Publication by C. F. Gauss in Intelligenzblatt der allgemeinen Literatur-Zeitung. As 17 is a Fermat prime, the regular heptadecagon is a constructible polygon (that is, one that can be constructed using a compass and unmarked straightedge): this was shown by Carl Friedrich Gauss in 1796 at the age of 19. [1]
As n approaches infinity, the internal angle approaches 180 degrees. For a regular polygon with 10,000 sides (a myriagon) the internal angle is 179.964°. As the number of sides increases, the internal angle can come very close to 180°, and the shape of the polygon approaches that of a circle. However the polygon can never become a circle.
A regular hexadecagon is a hexadecagon in which all angles are equal and all sides are congruent. Its Schläfli symbol is {16} and can be constructed as a truncated octagon, t{8}, and a twice-truncated square tt{4}. A truncated hexadecagon, t{16}, is a triacontadigon, {32}.
A regular triangle, decagon, and pentadecagon can completely fill a plane vertex. However, due to the triangle's odd number of sides, the figures cannot alternate around the triangle, so the vertex cannot produce a semiregular tiling.
Exterior angle – The exterior angle is the supplementary angle to the interior angle. Tracing around a convex n -gon, the angle "turned" at a corner is the exterior or external angle. Tracing all the way around the polygon makes one full turn , so the sum of the exterior angles must be 360°.
However, it is constructible using neusis, or an angle trisector. The following is an animation from a neusis construction of a regular tridecagon with radius of circumcircle O A ¯ = 12 , {\displaystyle {\overline {OA}}=12,} according to Andrew M. Gleason , [ 1 ] based on the angle trisection by means of the Tomahawk (light blue).