Search results
Results From The WOW.Com Content Network
Schwann cells or neurolemmocytes (named after German physiologist Theodor Schwann) are the principal glia of the peripheral nervous system (PNS). Glial cells function to support neurons and in the PNS, also include satellite cells, olfactory ensheathing cells, enteric glia and glia that reside at sensory nerve endings, such as the Pacinian corpuscle.
Perisynaptic schwann cells (also known as Terminal schwann cells or Teloglia) are neuroglia found at the Neuromuscular junction (NMJ) with known functions in synaptic transmission, synaptogenesis, and nerve regeneration. [1] These cells share a common ancestor with both Myelinating and Non-Myelinating Schwann Cells called Neural Crest cells.
The nonmyelinating Schwann cells are a subgroup of the Schwann cells characterized by not forming myelin. [1]The group of nonmyelinating Schwann cells includes the terminal Schwann cells, present at neuromuscular junctions, the Schwann cells of Remak fibers (also called Remak Schwann cells) and the Schwann cells associated to sensory structures, like tactile corpuscles and lamellar corpuscles.
Neurilemma (also known as neurolemma, sheath of Schwann, or Schwann's sheath) [1] is the outermost nucleated cytoplasmic layer of Schwann cells (also called neurilemmocytes) that surrounds the axon of the neuron. It forms the outermost layer of the nerve fiber in the peripheral nervous system. [2]
Plate 4, Figure 9 from the book, showing drawings of what are now called Schwann cells in the vagus nerve of a calf. The book is credited with the first description of what would later be called Schwann cell, a type of glial cell. [3] The description of the cells was evident from passages such as: [3]
During their proliferation phase, Schwann cells begin to form a line of cells called Bands of Bungner within the basal laminar tube. Axons have been observed to regenerate in close association to these cells. [26] Schwann cells upregulate the production of cell surface adhesion molecule ninjurin further promoting growth. [27]
Moreover, the distinctions based on function between neurons and other cells such as cardiac and muscle cells are not helpful. Thus, the fundamental difference between a neuron and a nonneuronal cell is a matter of degree. Another major class of cells found in the nervous system are glial cells. These cells are only recently beginning to ...
The axolemma is responsible for relaying signals between the neuron and it's Schwann Cells. These signals control the proliferative and myelin-producing functions of the Schwann Cells, and also partly play a role in the regulation of the size of the axon. [2]