Search results
Results From The WOW.Com Content Network
This state-space realization is called controllable canonical form because the resulting model is guaranteed to be controllable (i.e., because the control enters a chain of integrators, it has the ability to move every state). The transfer function coefficients can also be used to construct another type of canonical form ˙ = [] + [] () = [] ().
In control theory there are two main methods of analyzing feedback systems: the transfer function (or frequency domain) method and the state space method. When the transfer function method is used, attention is focused on the locations in the s-plane where the transfer function is undefined (the poles) or zero (the zeroes; see Zeroes and poles ...
The transfer function of a two-port electronic circuit, such as an amplifier, might be a two-dimensional graph of the scalar voltage at the output as a function of the scalar voltage applied to the input; the transfer function of an electromechanical actuator might be the mechanical displacement of the movable arm as a function of electric ...
This state-space realization is called controllable canonical form (also known as phase variable canonical form) because the resulting model is guaranteed to be controllable (i.e., because the control enters a chain of integrators, it has the ability to move every state). The transfer function coefficients can also be used to construct another ...
System in open-loop. If the closed-loop dynamics can be represented by the state space equation (see State space (controls)) _ ˙ = _ + _, with output equation _ = _ + _, then the poles of the system transfer function are the roots of the characteristic equation given by
The closed-loop transfer function is measured at the output. The output signal can be calculated from the closed-loop transfer function and the input signal. Signals may be waveforms, images, or other types of data streams. An example of a closed-loop block diagram, from which a transfer function may be computed, is shown below:
In control system theory, and various branches of engineering, a transfer function matrix, or just transfer matrix is a generalisation of the transfer functions of single-input single-output (SISO) systems to multiple-input and multiple-output (MIMO) systems. [1] The matrix relates the outputs of the system to its inputs.
The state-transition matrix is used to find the solution to a general state-space representation of a linear system in the following form ˙ = () + (), =, where () are the states of the system, () is the input signal, () and () are matrix functions, and is the initial condition at .