When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Skewness - Wikipedia

    en.wikipedia.org/wiki/Skewness

    The skewness value can be positive, zero, negative, or undefined. For a unimodal distribution (a distribution with a single peak), negative skew commonly indicates that the tail is on the left side of the distribution, and positive skew indicates that the tail is on the right. In cases where one tail is long but the other tail is fat, skewness ...

  3. Planarization - Wikipedia

    en.wikipedia.org/wiki/Planarization

    [1] [6] This parameter k is known as the skewness of the graph. [3] [7] There has also been some study of a related problem, finding the largest planar induced subgraph of a given graph. Again, this is NP-hard, but fixed-parameter tractable when all but a few vertices belong to the induced subgraph. [8]

  4. Normal probability plot - Wikipedia

    en.wikipedia.org/wiki/Normal_probability_plot

    Deviations from a straight line suggest departures from normality. The plotting can be manually performed by using a special graph paper, called normal probability paper. With modern computers normal plots are commonly made with software. The normal probability plot is a special case of the Q–Q probability plot for a normal distribution.

  5. Skewed generalized t distribution - Wikipedia

    en.wikipedia.org/wiki/Skewed_generalized_t...

    where is the beta function, is the location parameter, > is the scale parameter, < < is the skewness parameter, and > and > are the parameters that control the kurtosis. and are not parameters, but functions of the other parameters that are used here to scale or shift the distribution appropriately to match the various parameterizations of this distribution.

  6. P–P plot - Wikipedia

    en.wikipedia.org/wiki/P–P_plot

    As an example, if the two distributions do not overlap, say F is below G, then the P–P plot will move from left to right along the bottom of the square – as z moves through the support of F, the cdf of F goes from 0 to 1, while the cdf of G stays at 0 – and then moves up the right side of the square – the cdf of F is now 1, as all points of F lie below all points of G, and now the cdf ...

  7. Log-normal distribution - Wikipedia

    en.wikipedia.org/wiki/Log-normal_distribution

    Comparison of mean, median and mode of two log-normal distributions with different skewness. The mode is the point of global maximum of the probability density function. In particular, by solving the equation ( ln ⁡ f ) ′ = 0 {\displaystyle (\ln f)'=0} , we get that:

  8. Pearson distribution - Wikipedia

    en.wikipedia.org/wiki/Pearson_distribution

    A Pearson density p is defined to be any valid solution to the differential equation (cf. Pearson 1895, p. 381) ′ () + + + + = ()with: =, = = +, =. According to Ord, [3] Pearson devised the underlying form of Equation (1) on the basis of, firstly, the formula for the derivative of the logarithm of the density function of the normal distribution (which gives a linear function) and, secondly ...

  9. Exponentially modified Gaussian distribution - Wikipedia

    en.wikipedia.org/wiki/Exponentially_modified...

    This can also be seen as a three-parameter generalization of a normal distribution to add skew; another distribution like that is the skew normal distribution, which has thinner tails. The distribution is a compound probability distribution in which the mean of a normal distribution varies randomly as a shifted exponential distribution .