Search results
Results From The WOW.Com Content Network
Cumulative distribution function for the exponential distribution Cumulative distribution function for the normal distribution. In probability theory and statistics, the cumulative distribution function (CDF) of a real-valued random variable, or just distribution function of , evaluated at , is the probability that will take a value less than or equal to .
Its cumulative distribution function is the logistic function, which appears in logistic regression and feedforward neural networks. It resembles the normal distribution in shape but has heavier tails (higher kurtosis). The logistic distribution is a special case of the Tukey lambda distribution.
The distribution is named after Lord Rayleigh (/ ˈ r eɪ l i /). [1] A Rayleigh distribution is often observed when the overall magnitude of a vector in the plane is related to its directional components. One example where the Rayleigh distribution naturally arises is when wind velocity is analyzed in two dimensions.
Survival functions or complementary cumulative distribution functions are often denoted by placing an overbar over the symbol for the cumulative: ¯ = (), or denoted as (), In particular, the pdf of the standard normal distribution is denoted by φ ( z ) {\textstyle \varphi (z)} , and its cdf by Φ ( z ) {\textstyle \Phi (z)} .
The cumulative distribution function (cdf) of the half-logistic distribution is intimately related to the cdf of the logistic distribution. Formally, if F(k) is the cdf for the logistic distribution, then G(k) = 2F(k) − 1 is the cdf of a half-logistic distribution. Specifically,
The natural exponential family of a distribution may be realized by shifting or translating K(t), and adjusting it vertically so that it always passes through the origin: if f is the pdf with cumulant generating function () = (), and | is its natural exponential family, then () = (), and () = (+) ().
In statistics, the Q-function is the tail distribution function of the standard normal distribution. [ 1 ] [ 2 ] In other words, Q ( x ) {\displaystyle Q(x)} is the probability that a normal (Gaussian) random variable will obtain a value larger than x {\displaystyle x} standard deviations.
a function of t, determines the behavior and properties of the probability distribution of X. It is equivalent to a probability density function or cumulative distribution function, since knowing one of these functions allows computation of the others, but they provide different insights into the features of the random variable. In particular ...