Search results
Results From The WOW.Com Content Network
On the other hand, if a chemical is a weak acid its conjugate base will not necessarily be strong. Consider that ethanoate, the conjugate base of ethanoic acid, has a base splitting constant (Kb) of about 5.6 × 10 −10, making it a weak base. In order for a species to have a strong conjugate base it has to be a very weak acid, like water.
Bisulfide (or bisulphide in British English) is an inorganic anion with the chemical formula HS − (also written as SH −). It contributes no color to bisulfide salts, and its salts may have a distinctive putrid smell. It is a strong base. Bisulfide solutions are corrosive and attack the skin.
Hydrogen sulfide is a chemical compound with the formula H 2 S.It is a colorless chalcogen-hydride gas, and is poisonous, corrosive, and flammable, with trace amounts in ambient atmosphere having a characteristic foul odor of rotten eggs. [11]
An acid may also form hydrogen bonds to its conjugate base. This process, known as homoconjugation, has the effect of enhancing the acidity of acids, lowering their effective pK a values, by stabilizing the conjugate base. Homoconjugation enhances the proton-donating power of toluenesulfonic acid in acetonitrile solution by a factor of nearly 800.
Its conjugate base is the acetate ion with K b = 10 −14 /K a = 5.7 x 10 −10 (from the relationship K a × K b = 10 −14), which certainly does not correspond to a strong base. The conjugate of a weak acid is often a weak base and vice versa.
H 2 O is a base because it accepts a proton from CH 3 COOH and becomes its conjugate acid, the hydronium ion, (H 3 O +). [9] The reverse of an acid–base reaction is also an acid–base reaction, between the conjugate acid of the base in the first reaction and the conjugate base of the acid.
Solutions of bisulfite are typically prepared by treatment of sulfur dioxide with aqueous base: [3] SO 2 + OH − → HSO − 3. HSO − 3 is the conjugate base of sulfurous acid, (H 2 SO 3). HSO − 3 is a weak acidic species with a pK a of 6.97. Its conjugate base is sulfite, SO 2− 3: HSO − 3 ⇌ SO 2− 3 + H +
A conjugate base is formed when the acid is deprotonated by the base. In the image above, hydroxide acts as a base to deprotonate the carboxylic acid. The conjugate base is the carboxylate salt. In this case, hydroxide is a strong enough base to deprotonate the carboxylic acid because the conjugate base is more stable than the base because the ...