Search results
Results From The WOW.Com Content Network
As quoted from this source in an online version of: J.A. Dean (ed), Lange's Handbook of Chemistry (15th Edition), McGraw-Hill, 1999; Section 4; Table 4.1, Electronic Configuration and Properties of the Elements Touloukian, Y. S., Thermophysical Properties of Matter, Vol. 12, Thermal Expansion, Plenum, New York, 1975.
Thermal expansivities of the elements; V. Vapor pressures of the elements (data page) This page was last edited on 5 January 2022, at 07:00 (UTC). Text is available ...
A number of materials contract on heating within certain temperature ranges; this is usually called negative thermal expansion, rather than "thermal contraction".For example, the coefficient of thermal expansion of water drops to zero as it is cooled to 3.983 °C (39.169 °F) and then becomes negative below this temperature; this means that water has a maximum density at this temperature, and ...
J.A. Dean (ed), Lange's Handbook of Chemistry (15th Edition), McGraw-Hill, 1999; Section 6, Thermodynamic Properties; Table 6.4, Heats of Fusion, Vaporization, and Sublimation and Specific Heat at Various Temperatures of the Elements and Inorganic Compounds
J.A. Dean (ed), Lange's Handbook of Chemistry (15th Edition), McGraw-Hill, 1999; Section 6, Thermodynamic Properties; Table 6.3, Enthalpies and Gibbs Energies of Formation, Entropies, and Heat Capacities of the Elements and Inorganic Compounds
Thermal expansivities of the elements; V. Vapor pressures of the elements (data page) This page was last edited on 4 July 2019, at 13:30 (UTC). Text is available ...
The ΔH° form undergoes discontinuities at a phase transition temperatures of the constituent element(s) and the compound. The enthalpy change for any standard reaction is designated ΔH° rx. Standard molar heat of formation of ZnBr 2 (c,l) from the elements, showing discontinuities at transition temperatures of the elements and the compound.
J.A. Dean (ed.), Lange's Handbook of Chemistry (15th Edition), McGraw-Hill, 1999; Section 6, Thermodynamic Properties; Table 6.4, Heats of Fusion, Vaporization, and Sublimation and Specific Heat at Various Temperatures of the Elements and Inorganic Compounds