Ad
related to: noise meaning in communication terms and conditions
Search results
Results From The WOW.Com Content Network
Environmental noise can be any external noise that can potentially impact the effectiveness of communication. [2] These noises can be any type of sight (i.e., car accident, television show), sound (i.e., talking, music, ringtones), or stimuli (i.e., tapping on the shoulder) that can distract someone from receiving the message. [3]
In telecommunications, the term channel noise level has the following meanings: The ratio of the noise in the communication channel at any point in a transmission system to an arbitrary level chosen as a reference. [a] [b] The noise power spectral density in the frequency range of interest. The average noise power in the frequency range of ...
If the noise has expected value of zero, as is common, the denominator is its variance, the square of its standard deviation σ N. The signal and the noise must be measured the same way, for example as voltages across the same impedance. Their root mean squares can alternatively be used according to:
can be seen as a normalized measure of the energy per symbol to noise power spectral density (/): = where is the energy per symbol in joules and ρ is the nominal spectral efficiency in (bits/s)/Hz. [2]
In information theory and telecommunication engineering, the signal-to-interference-plus-noise ratio (SINR [1]) (also known as the signal-to-noise-plus-interference ratio (SNIR) [2]) is a quantity used to give theoretical upper bounds on channel capacity (or the rate of information transfer) in wireless communication systems such as networks.
A long list of noise measures have been defined to measure noise in signal processing: in absolute terms, relative to some standard noise level, or relative to the desired signal level. They include: Dynamic range, often defined by inherent noise level; Signal-to-noise ratio (SNR), ratio of noise power to signal power
Thermal noise is approximately white, meaning that its power spectral density is nearly equal throughout the frequency spectrum. The amplitude of the signal has very nearly a Gaussian probability density function. A communication system affected by thermal noise is often modelled as an additive white Gaussian noise (AWGN) channel.
In telecommunications and computer networking, communication channels can be affected by wideband Gaussian noise coming from many natural sources, such as the thermal vibrations of atoms in conductors (referred to as thermal noise or Johnson–Nyquist noise), shot noise, black-body radiation from the earth and other warm objects, and from ...