Ads
related to: neuroplasticity for dummies video
Search results
Results From The WOW.Com Content Network
Two molecular mechanisms for synaptic plasticity involve the NMDA and AMPA glutamate receptors. Opening of NMDA channels (which relates to the level of cellular depolarization) leads to a rise in post-synaptic Ca 2+ concentration and this has been linked to long-term potentiation, LTP (as well as to protein kinase activation); strong depolarization of the post-synaptic cell completely ...
Neuroplasticity, also known as neural plasticity or just plasticity, is the ability of neural networks in the brain to change through growth and reorganization. Neuroplasticity refers to the brain's ability to reorganize and rewire its neural connections, enabling it to adapt and function in ways that differ from its prior state.
Hebbian theory is a neuropsychological theory claiming that an increase in synaptic efficacy arises from a presynaptic cell's repeated and persistent stimulation of a postsynaptic cell.
The hippocampus regulates memory function. Memory improvement is the act of enhancing one's memory. Factors motivating research on improving memory include conditions such as amnesia, age-related memory loss, people’s desire to enhance their memory, and the search to determine factors that impact memory and cognition.
In the 1980s, however, Jerry Fodor revived the idea of the modularity of mind, although without the notion of precise physical localizability. Drawing from Noam Chomsky's idea of the language acquisition device and other work in linguistics as well as from the philosophy of mind and the implications of optical illusions, he became a major proponent of the idea with the 1983 publication of ...
It is both the growth of new branches or extensions from existing neurons in response to injury or disease. This process is a form of neuroplasticity, which allows the brain to rewire itself and adapt to changes in the environment. Neural sprouting is thought to play an important role in recovery from brain injury, where the brain compensates ...
Activity-dependent plasticity is a form of functional and structural neuroplasticity that arises from the use of cognitive functions and personal experience. [1] Hence, it is the biological basis for learning and the formation of new memories.
Wilder Penfield, a neurosurgeon, was one of the first to map the cortical maps of the human brain. [3] When performing brain surgeries on conscious patients, Penfield would touch either a patient's sensory or motor brain map, located on the cerebral cortex, with an electric probe to determine if a patient could notice either a specific sensation or movement in a particular area on their body.