When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Spherical conic - Wikipedia

    en.wikipedia.org/wiki/Spherical_conic

    The solution of the Kepler problem in a space of uniform positive curvature is a spherical conic, with a potential proportional to the cotangent of geodesic distance. [ 5 ] Because it preserves distances to a pair of specified points, the two-point equidistant projection maps the family of confocal conics on the sphere onto two families of ...

  3. File:Frank-Kamenetskii spherical problem.pdf - Wikipedia

    en.wikipedia.org/wiki/File:Frank-Kamenetskii...

    You are free: to share – to copy, distribute and transmit the work; to remix – to adapt the work; Under the following conditions: attribution – You must give appropriate credit, provide a link to the license, and indicate if changes were made.

  4. Conical coordinates - Wikipedia

    en.wikipedia.org/wiki/Conical_coordinates

    The elliptic cones intersect the sphere in spherical conics. Conical coordinates , sometimes called sphero-conal or sphero-conical coordinates, are a three-dimensional orthogonal coordinate system consisting of concentric spheres (described by their radius r ) and by two families of perpendicular elliptic cones, aligned along the z - and x ...

  5. Hypercone - Wikipedia

    en.wikipedia.org/wiki/Hypercone

    All curves are circles or straight lines. The generatrices and parallels generates a 3D dual cone. The hypermeridians generates a set of concentric spheres. In geometry, a hypercone (or spherical cone) is the figure in the 4-dimensional Euclidean space represented by the equation + + =

  6. Matrix representation of conic sections - Wikipedia

    en.wikipedia.org/wiki/Matrix_representation_of...

    If the conic is non-degenerate, the conjugates of a point always form a line and the polarity defined by the conic is a bijection between the points and lines of the extended plane containing the conic (that is, the plane together with the points and line at infinity). If the point p lies on the conic Q, the polar line of p is the tangent line ...

  7. Five points determine a conic - Wikipedia

    en.wikipedia.org/wiki/Five_points_determine_a_conic

    Another classic problem in enumerative geometry, of similar vintage to conics, is the Problem of Apollonius: a circle that is tangent to three circles in general determines eight circles, as each of these is a quadratic condition and 2 3 = 8. As a question in real geometry, a full analysis involves many special cases, and the actual number of ...

  8. Analytic geometry - Wikipedia

    en.wikipedia.org/wiki/Analytic_geometry

    In the Cartesian coordinate system, the graph of a quadratic equation in two variables is always a conic section – though it may be degenerate, and all conic sections arise in this way. The equation will be of the form A x 2 + B x y + C y 2 + D x + E y + F = 0 with A , B , C not all zero. {\displaystyle Ax^{2}+Bxy+Cy^{2}+Dx+Ey+F=0{\text{ with ...

  9. Geodesics on an ellipsoid - Wikipedia

    en.wikipedia.org/wiki/Geodesics_on_an_ellipsoid

    For a sphere the solutions to these problems are simple exercises in spherical trigonometry, whose solution is given by formulas for solving a spherical triangle. (See the article on great-circle navigation.) For an ellipsoid of revolution, the characteristic constant defining the geodesic was found by Clairaut (1735).