Search results
Results From The WOW.Com Content Network
which illustrates the kinetic energy is in general a function of the generalized velocities, coordinates, and time if the constraints also vary with time, so T = T(q, dq/dt, t). In the case the constraints on the particles are time-independent, then all partial derivatives with respect to time are zero, and the kinetic energy is a homogeneous ...
Like any physical quantity that is a function of velocity, the kinetic energy of an object depends on the relationship between the object and the observer's frame of reference. Thus, the kinetic energy of an object is not invariant. Spacecraft use chemical energy to launch and gain considerable kinetic energy to reach orbital velocity. In an ...
Once the circular orbital velocity is known, the escape velocity is easily found by multiplying by : = = . To escape from gravity, the kinetic energy must at least match the negative potential energy.
A rocket's required mass ratio as a function of effective exhaust velocity ratio. The classical rocket equation, or ideal rocket equation is a mathematical equation that describes the motion of vehicles that follow the basic principle of a rocket: a device that can apply acceleration to itself using thrust by expelling part of its mass with high velocity and can thereby move due to the ...
Because kinetic energy equals mv 2 /2, this change in velocity imparts a greater increase in kinetic energy at a high velocity than it would at a low velocity. For example, considering a 2 kg rocket: at 1 m/s, the rocket starts with 1 2 = 1 J of kinetic energy. Adding 1 m/s increases the kinetic energy to 2 2 = 4 J, for a gain of 3 J;
The Oberth effect is used in a powered flyby or Oberth maneuver where the application of an impulse, typically from the use of a rocket engine, close to a gravitational body (where the gravity potential is low, and the speed is high) can give much more change in kinetic energy and final speed (i.e. higher specific energy) than the same impulse ...
The law is derived from the principles of conservation of mass and momentum of the air stream flowing through an idealized "actuator disk" that extracts energy from the wind stream. According to Betz's law, no wind turbine of any mechanism can capture more than 16/27 (59.3%) of the kinetic energy in wind.
the kinetic energy of the system is equal to the absolute value of the total energy; the potential energy of the system is equal to twice the total energy; The escape velocity from any distance is √ 2 times the speed in a circular orbit at that distance: the kinetic energy is twice as much, hence the total energy is zero. [citation needed]