When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. List of curves - Wikipedia

    en.wikipedia.org/wiki/List_of_curves

    This is a list of Wikipedia articles about curves used in different fields: ... Rational curves are subdivided according to the degree of the polynomial. Degree 1

  3. Rational normal curve - Wikipedia

    en.wikipedia.org/wiki/Rational_normal_curve

    In mathematics, the rational normal curve is a smooth, rational curve C of degree n in projective n-space P n. It is a simple example of a projective variety; formally, it is the Veronese variety when the domain is the projective line. For n = 2 it is the plane conic Z 0 Z 2 = Z 2 1, and for n = 3 it is the twisted cubic.

  4. Quintic threefold - Wikipedia

    en.wikipedia.org/wiki/Quintic_threefold

    One of the easiest examples to check of a Calabi-Yau manifold is given by the Fermat quintic threefold, which is defined by the vanishing locus of the polynomial = + + + + Computing the partial derivatives of gives the four polynomials = = = = = Since the only points where they vanish is given by the coordinate axes in , the vanishing locus is empty since [::::] is not a point in .

  5. Faltings's theorem - Wikipedia

    en.wikipedia.org/wiki/Faltings's_theorem

    Faltings's theorem is a result in arithmetic geometry, according to which a curve of genus greater than 1 over the field of rational numbers has only finitely many rational points. This was conjectured in 1922 by Louis Mordell, [1] and known as the Mordell conjecture until its 1983 proof by Gerd Faltings. [2]

  6. Rank of an elliptic curve - Wikipedia

    en.wikipedia.org/wiki/Rank_of_an_elliptic_curve

    In mathematics, the rank of an elliptic curve is the rational Mordell–Weil rank of an elliptic curve defined over the field of rational numbers or more generally a number field K. Mordell's theorem (generalized to arbitrary number fields by André Weil ) says the group of rational points on an elliptic curve has a finite basis .

  7. Birational geometry - Wikipedia

    en.wikipedia.org/wiki/Birational_geometry

    A birational map from X to Y is a rational map f : X ⇢ Y such that there is a rational map Y ⇢ X inverse to f.A birational map induces an isomorphism from a nonempty open subset of X to a nonempty open subset of Y, and vice versa: an isomorphism between nonempty open subsets of X, Y by definition gives a birational map f : X ⇢ Y.

  8. Lüroth's theorem - Wikipedia

    en.wikipedia.org/wiki/Lüroth's_theorem

    The proof of Lüroth's theorem can be derived easily from the theory of rational curves, using the geometric genus. [2] This method is non-elementary, but several short proofs using only the basics of field theory have long been known, mainly using the concept of transcendence degree. [3]

  9. Modularity theorem - Wikipedia

    en.wikipedia.org/wiki/Modularity_theorem

    The modularity of an elliptic curve E of conductor N can be expressed also by saying that there is a non-constant rational map defined over ℚ, from the modular curve X 0 (N) to E. In particular, the points of E can be parametrized by modular functions. For example, a modular parametrization of the curve y 2 − y = x 3 − x is given by [18]