When.com Web Search

  1. Ads

    related to: decreasing wavelength increasing frequency range

Search results

  1. Results From The WOW.Com Content Network
  2. Electromagnetic spectrum - Wikipedia

    en.wikipedia.org/wiki/Electromagnetic_spectrum

    In frequency (and thus energy), UV rays sit between the violet end of the visible spectrum and the X-ray range. The UV wavelength spectrum ranges from 399 nm to 10 nm and is divided into 3 sections: UVA, UVB, and UVC. UV is the lowest energy range energetic enough to ionize atoms, separating electrons from them, and thus causing chemical reactions.

  3. Electromagnetic radiation - Wikipedia

    en.wikipedia.org/wiki/Electromagnetic_radiation

    Electromagnetic waves of different frequency are called by different names since they have different sources and effects on matter. In order of increasing frequency and decreasing wavelength, the electromagnetic spectrum includes: radio waves, microwaves, infrared, visible light, ultraviolet, X-rays, and gamma rays. [3] [4]

  4. Redshift - Wikipedia

    en.wikipedia.org/wiki/Redshift

    In physics, a redshift is an increase in the wavelength, and corresponding decrease in the frequency and photon energy, of electromagnetic radiation (such as light).The opposite change, a decrease in wavelength and increase in frequency and energy, is known as a blueshift, or negative redshift.

  5. Radio spectrum - Wikipedia

    en.wikipedia.org/wiki/Radio_spectrum

    As a matter of convention, the ITU divides the radio spectrum into 12 bands, each beginning at a wavelength which is a power of ten (10 n) metres, with corresponding frequency of 3×10 8−n hertz, and each covering a decade of frequency or wavelength. Each of these bands has a traditional name.

  6. Dispersion (optics) - Wikipedia

    en.wikipedia.org/wiki/Dispersion_(optics)

    The pulse therefore becomes positively chirped, or up-chirped, increasing in frequency with time. On the other hand, if a pulse travels through a material with negative group-velocity dispersion, shorter-wavelength components travel faster than the longer ones, and the pulse becomes negatively chirped , or down-chirped , decreasing in frequency ...

  7. Planck's law - Wikipedia

    en.wikipedia.org/wiki/Planck's_law

    The 41.8% point is the wavelength-frequency-neutral peak (i.e. the peak in power per unit change in logarithm of wavelength or frequency). These are the points at which the respective Planck-law functions ⁠ 1 / λ 5 ⁠ , ν 3 and ⁠ ν 2 / λ 2 ⁠ , respectively, divided by exp ( ⁠ hν / k B T ⁠ ) − 1 attain their maxima.

  8. Infrared - Wikipedia

    en.wikipedia.org/wiki/Infrared

    This range of wavelengths corresponds to a frequency range of approximately 430 THz down to 300 GHz. Beyond infrared is the microwave portion of the electromagnetic spectrum . Increasingly, terahertz radiation is counted as part of the microwave band, not infrared, moving the band edge of infrared to 0.1 mm (3 THz).

  9. Free spectral range - Wikipedia

    en.wikipedia.org/wiki/Free_spectral_range

    The free spectral range of a diffraction grating is the largest wavelength range for a given order that does not overlap the same range in an adjacent order. If the ( m + 1)-th order of λ {\displaystyle \lambda } and m -th order of ( λ + Δ λ ) {\displaystyle (\lambda +\Delta \lambda )} lie at the same angle, then