When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Biological carbon fixation - Wikipedia

    en.wikipedia.org/wiki/Biological_carbon_fixation

    Cyanobacteria such as these carry out photosynthesis.Their emergence foreshadowed the evolution of many photosynthetic plants and oxygenated Earth's atmosphere.. Biological carbon fixation, or сarbon assimilation, is the process by which living organisms convert inorganic carbon (particularly carbon dioxide, CO 2) to organic compounds.

  3. Photorespiration - Wikipedia

    en.wikipedia.org/wiki/Photorespiration

    Lowering photorespiration may not result in increased growth rates for plants. Photorespiration may be necessary for the assimilation of nitrate from soil. Thus, a lowering in photorespiration by genetic engineering or because of increasing atmospheric carbon dioxide may not benefit plants as has been proposed. [14]

  4. C4 carbon fixation - Wikipedia

    en.wikipedia.org/wiki/C4_carbon_fixation

    The resulting pyruvate (PYR), together with about half of the phosphoglycerate (PGA) produced by RuBisCO, diffuses back to the mesophyll. PGA is then chemically reduced and diffuses back to the bundle sheath to complete the reductive pentose phosphate cycle (RPP). This exchange of metabolites is essential for C 4 photosynthesis to work.

  5. CO2 fertilization effect - Wikipedia

    en.wikipedia.org/wiki/CO2_fertilization_effect

    Through photosynthesis, plants use CO 2 from the atmosphere, water from the ground, and energy from the sun to create sugars used for growth and fuel. [22] While using these sugars as fuel releases carbon back into the atmosphere (photorespiration), growth stores carbon in the physical structures of the plant (i.e. leaves, wood, or non-woody stems). [23]

  6. Photosynthesis - Wikipedia

    en.wikipedia.org/wiki/Photosynthesis

    Photosynthesis usually refers to oxygenic photosynthesis, a process that produces oxygen. Photosynthetic organisms store the chemical energy so produced within intracellular organic compounds (compounds containing carbon) like sugars, glycogen , cellulose and starches .

  7. Photosynthetic efficiency - Wikipedia

    en.wikipedia.org/wiki/Photosynthetic_efficiency

    The following is a breakdown of the energetics of the photosynthesis process from Photosynthesis by Hall and Rao: [6]. Starting with the solar spectrum falling on a leaf, 47% lost due to photons outside the 400–700 nm active range (chlorophyll uses photons between 400 and 700 nm, extracting the energy of one 700 nm photon from each one)

  8. Fractionation of carbon isotopes in oxygenic photosynthesis

    en.wikipedia.org/wiki/Fractionation_of_carbon...

    The δ 13 C of C3 plants depends on the relationship between stomatal conductance and photosynthetic rate, which is a good proxy of water use efficiency in the leaf. [19] C3 plants with high water-use efficiency tend to be less fractionated in 13 C (i.e., δ 13 C is relatively less negative) compared to C3 plants with low water-use efficiency. [19]

  9. Photoprotection - Wikipedia

    en.wikipedia.org/wiki/Photoprotection

    Photoprotection is the biochemical process that helps organisms cope with molecular damage caused by sunlight.Plants and other oxygenic phototrophs have developed a suite of photoprotective mechanisms to prevent photoinhibition and oxidative stress caused by excess or fluctuating light conditions.