Search results
Results From The WOW.Com Content Network
However, AWG is dissimilar to IEC 60228, the metric wire-size standard used in most parts of the world, based directly on the wire cross-section area (in square millimetres, mm 2). The AWG tables are for a single, solid and round conductor. The AWG of a stranded wire is determined by the cross-sectional area of the equivalent solid conductor.
For example, one common wire size used in the NEC has a conductor diameter of 0.5 inches, or 500 mils, and thus a cross-section of = circular mils, written as 250 kcmil or 250 MCM, which is the first size larger than 0000 AWG used within the NEC.
Comparison of SWG (red), AWG (blue) and IEC 60228 (black) wire gauge sizes from 0.03 to 200 mm² to scale on a 1 mm grid – in the SVG file, hover over a size to highlight it. In engineering applications, it is often most convenient to describe a wire in terms of its cross-section area, rather than its diameter, because the cross section is directly proportional to its strength and weight ...
Comparison of SWG (red), AWG (blue) and IEC 60228 (black) wire gauge sizes from 0.03 to 200 mm² to scale on a 1 mm grid – in the SVG file, hover over a size to highlight it The first attempt to adopt a geometrical system was made by Messrs Brown & Sharpe in 1855.
A standard wire gauge. British Standard Wire Gauge (often abbreviated to Standard Wire Gauge or SWG) is a unit for denoting wire size given by BS 3737:1964 (now withdrawn). It is also known as the Imperial Wire Gauge or British Standard Gauge. Use of SWG sizes has fallen greatly in popularity, but they are still used as a measure of thickness ...
An example of a copper alloy conductor is cadmium copper wire, which is used for railroad electrification in North America. [5] In Britain the BPO (later Post Office Telecommunications ) used cadmium copper aerial lines with 1% cadmium for extra strength; for local lines 40 lb/mile (1.3 mm dia) and for toll lines 70 lb/mile (1.7 mm dia).
Sometime around 1913 several copper samples from 14 important refiners and wire manufacturers were analyzed by the U.S. Bureau of Standards. The average resistance of the samples was determined to be 0.15292 Ω for copper wires with a mass of 1 gram of uniform cross section and 1 meter in length at 20 °C. In the United States this is usually ...
This means that all pure copper (Cu) wires (which have not been subjected to distortion of their crystalline structure etc.), irrespective of their shape and size, have the same resistivity, but a long, thin copper wire has a much larger resistance than a thick, short copper wire. Every material has its own characteristic resistivity.