When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Support vector machine - Wikipedia

    en.wikipedia.org/wiki/Support_vector_machine

    Thus, in a sufficiently rich hypothesis space—or equivalently, for an appropriately chosen kernel—the SVM classifier will converge to the simplest function (in terms of ) that correctly classifies the data. This extends the geometric interpretation of SVM—for linear classification, the empirical risk is minimized by any function whose ...

  3. Kernel method - Wikipedia

    en.wikipedia.org/wiki/Kernel_method

    The function : is often referred to as a kernel or a kernel function. The word "kernel" is used in mathematics to denote a weighting function for a weighted sum or integral . Certain problems in machine learning have more structure than an arbitrary weighting function k {\displaystyle k} .

  4. Polynomial kernel - Wikipedia

    en.wikipedia.org/wiki/Polynomial_kernel

    For degree-d polynomials, the polynomial kernel is defined as [2](,) = (+)where x and y are vectors of size n in the input space, i.e. vectors of features computed from training or test samples and c ≥ 0 is a free parameter trading off the influence of higher-order versus lower-order terms in the polynomial.

  5. Least-squares support vector machine - Wikipedia

    en.wikipedia.org/wiki/Least-squares_support...

    www.kernel-machines.org "Support Vector Machines and Kernel based methods (Smola & Schölkopf)". www.gaussianprocess.org "Gaussian Processes: Data modeling using Gaussian Process priors over functions for regression and classification (MacKay, Williams)". www.support-vector.net "Support Vector Machines and kernel based methods (Cristianini)".

  6. Radial basis function kernel - Wikipedia

    en.wikipedia.org/wiki/Radial_basis_function_kernel

    Since the value of the RBF kernel decreases with distance and ranges between zero (in the infinite-distance limit) and one (when x = x'), it has a ready interpretation as a similarity measure. [2] The feature space of the kernel has an infinite number of dimensions; for =, its expansion using the multinomial theorem is: [3]

  7. Category:Support vector machines - Wikipedia

    en.wikipedia.org/wiki/Category:Support_vector...

    Radial basis function kernel; Ranking SVM; Regularization perspectives on support vector machines; S. Sequential minimal optimization; Structured support vector machine

  8. Regularization perspectives on support vector machines

    en.wikipedia.org/wiki/Regularization...

    [2] [3] [4] This has enabled detailed comparisons between SVM and other forms of Tikhonov regularization, and theoretical grounding for why it is beneficial to use SVM's loss function, the hinge loss. [5]

  9. Relevance vector machine - Wikipedia

    en.wikipedia.org/wiki/Relevance_vector_machine

    where is the kernel function (usually Gaussian), are the variances of the prior on the weight vector (,), and , …, are the input vectors of the training set. [ 4 ] Compared to that of support vector machines (SVM), the Bayesian formulation of the RVM avoids the set of free parameters of the SVM (that usually require cross-validation-based ...