Search results
Results From The WOW.Com Content Network
Diffusion affects the color of objects in a substantial manner because it determines the average path of light in the material, and hence to which extent the various wavelengths are absorbed. [6] Red ink looks black when it stays in its bottle. Its vivid color is only perceived when it is placed on a scattering material (e.g. paper).
Wine glass in LCD projectors light beam makes the beam scatter.. In physics, scattering is a wide range of physical processes where moving particles or radiation of some form, such as light or sound, are forced to deviate from a straight trajectory by localized non-uniformities (including particles and radiation) in the medium through which they pass.
Rayleigh scattering causes the blue color of the daytime sky and the reddening of the Sun at sunset. Rayleigh scattering (/ ˈ r eɪ l i / RAY-lee) is the scattering or deflection of light, or other electromagnetic radiation, by particles with a size much smaller than the wavelength of the radiation.
The dominant radiative scattering processes in the atmosphere are Rayleigh scattering and Mie scattering; they are elastic, meaning that a photon of light can be deviated from its path without being absorbed and without changing wavelength. Under an overcast sky, there is no direct sunlight, and all light results from diffused skylight radiation.
Multiple-scattering effects of light scattering by particles are treated by radiative transfer techniques (see, e.g. atmospheric radiative transfer codes). The relative size of a scattering particle is defined by its size parameter x, which is the ratio of its characteristic dimension to its wavelength:
Light scattering in liquids and solids depends on the wavelength of the light being scattered. Limits to spatial scales of visibility (using white light) therefore arise, depending on the frequency of the light wave and the physical dimension (or spatial scale) of the scattering center. Visible light has a wavelength scale on the order of 0.5 μm.
in astronomy, backscattered light is that which is reflected with a phase angle of less than 90°. In other cases, the scattering intensity is enhanced in backward direction. This can have different reasons: In alpenglow, red light prevails because the blue part of the spectrum is depleted by Rayleigh scattering.
Inelastic scattering of light caused by acoustic phonons was first predicted by Léon Brillouin in 1914 [2]. Leonid Mandelstam is believed to have recognised the possibility of such scattering as early as 1918, but he published his idea only in 1926. [3] In order to credit Mandelstam, the effect is also called Brillouin-Mandelstam scattering (BMS).