When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Quadratic programming - Wikipedia

    en.wikipedia.org/wiki/Quadratic_programming

    Quadratic programming (QP) is the process of solving certain mathematical optimization problems involving quadratic functions.Specifically, one seeks to optimize (minimize or maximize) a multivariate quadratic function subject to linear constraints on the variables.

  3. Mathematical optimization - Wikipedia

    en.wikipedia.org/wiki/Mathematical_optimization

    This represents the value (or values) of the argument x in the interval (−∞,−1] that minimizes (or minimize) the objective function x 2 + 1 (the actual minimum value of that function is not what the problem asks for).

  4. MM algorithm - Wikipedia

    en.wikipedia.org/wiki/Mm_algorithm

    The MM algorithm is an iterative optimization method which exploits the convexity of a function in order to find its maxima or minima. The MM stands for “Majorize-Minimization” or “Minorize-Maximization”, depending on whether the desired optimization is a minimization or a maximization.

  5. Convex optimization - Wikipedia

    en.wikipedia.org/wiki/Convex_optimization

    A convex optimization problem is defined by two ingredients: [5] [6] The objective function, which is a real-valued convex function of n variables, :;; The feasible set, which is a convex subset.

  6. Newton's method in optimization - Wikipedia

    en.wikipedia.org/wiki/Newton's_method_in...

    The geometric interpretation of Newton's method is that at each iteration, it amounts to the fitting of a parabola to the graph of () at the trial value , having the same slope and curvature as the graph at that point, and then proceeding to the maximum or minimum of that parabola (in higher dimensions, this may also be a saddle point), see below.

  7. Lagrange multiplier - Wikipedia

    en.wikipedia.org/wiki/Lagrange_multiplier

    In mathematical optimization, the method of Lagrange multipliers is a strategy for finding the local maxima and minima of a function subject to equation constraints (i.e., subject to the condition that one or more equations have to be satisfied exactly by the chosen values of the variables). [1]

  8. Constrained optimization - Wikipedia

    en.wikipedia.org/wiki/Constrained_optimization

    In mathematical optimization, constrained optimization (in some contexts called constraint optimization) is the process of optimizing an objective function with respect to some variables in the presence of constraints on those variables.

  9. Maximum and minimum - Wikipedia

    en.wikipedia.org/wiki/Maximum_and_minimum

    Local and global maxima and minima for cos(3πx)/x, 0.1≤ x ≤1.1. In mathematical analysis, the maximum and minimum [a] of a function are, respectively, the greatest and least value taken by the function.