Search results
Results From The WOW.Com Content Network
The step response of a system in a given initial state consists of the time evolution of its outputs when its control inputs are Heaviside step functions. In electronic engineering and control theory , step response is the time behaviour of the outputs of a general system when its inputs change from zero to one in a very short time.
Damped oscillation is a typical transient response, where the output value oscillates until finally reaching a steady-state value. In electrical engineering and mechanical engineering, a transient response is the response of a system to a change from an equilibrium or a steady state. The transient response is not necessarily tied to abrupt ...
In an increasing system, the time constant is the time for the system's step response to reach 1 − 1 / e ≈ 63.2% of its final (asymptotic) value (say from a step increase). In radioactive decay the time constant is related to the decay constant ( λ ), and it represents both the mean lifetime of a decaying system (such as an atom) before it ...
The step response can be interpreted as the convolution with the impulse response, which is a sinc function. The overshoot and undershoot can be understood in this way: kernels are generally normalized to have integral 1, so they send constant functions to constant functions – otherwise they have gain.
Settling time depends on the system response and natural frequency. The settling time for a second order , underdamped system responding to a step response can be approximated if the damping ratio ζ ≪ 1 {\displaystyle \zeta \ll 1} by T s = − ln ( tolerance fraction ) damping ratio × natural freq {\displaystyle T_{s}=-{\frac {\ln ...
The Bode phase plot is the graph of the phase, commonly expressed in degrees, ... As a rule of thumb, good step response requires a phase margin of at least 45°, ...
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
The Heaviside step function, or the unit step function, usually denoted by H or θ (but sometimes u, 1 or 𝟙), is a step function named after Oliver Heaviside, the value of which is zero for negative arguments and one for positive arguments. Different conventions concerning the value H(0) are in use.