When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Autotroph - Wikipedia

    en.wikipedia.org/wiki/Autotroph

    Thus, heterotrophs – all animals, almost all fungi, as well as most bacteria and protozoa – depend on autotrophs, or primary producers, for the raw materials and fuel they need. Heterotrophs obtain energy by breaking down carbohydrates or oxidizing organic molecules (carbohydrates, fats, and proteins) obtained in food.

  3. Consumer (food chain) - Wikipedia

    en.wikipedia.org/wiki/Consumer_(food_chain)

    Autotrophs are classified as either photoautotrophs (which get energy from the sun, like plants) or chemoautotrophs (which get energy from chemical bonds, like certain bacteria). Consumers are typically viewed as predatory animals such as meat-eaters. However, herbivorous animals and parasitic fungi are also consumers.

  4. Primary nutritional groups - Wikipedia

    en.wikipedia.org/wiki/Primary_nutritional_groups

    Organotrophs use organic compounds as electron/hydrogen donors. Lithotrophs use inorganic compounds as electron/hydrogen donors.. The electrons or hydrogen atoms from reducing equivalents (electron donors) are needed by both phototrophs and chemotrophs in reduction-oxidation reactions that transfer energy in the anabolic processes of ATP synthesis (in heterotrophs) or biosynthesis (in autotrophs).

  5. Food web - Wikipedia

    en.wikipedia.org/wiki/Food_web

    Autotrophs and heterotrophs come in all sizes, from microscopic to many tonnes - from cyanobacteria to giant redwoods, and from viruses and bdellovibrio to blue whales. Charles Elton pioneered the concept of food cycles, food chains, and food size in his classical 1927 book "Animal Ecology"; Elton's 'food cycle' was replaced by 'food web' in a ...

  6. Unicellular organism - Wikipedia

    en.wikipedia.org/wiki/Unicellular_organism

    [36] [37] Protozoa, like plants and animals, can be considered heterotrophs or autotrophs. [33] Autotrophs like Euglena are capable of producing their energy using photosynthesis, while heterotrophic protozoa consume food by either funneling it through a mouth-like gullet or engulfing it with pseudopods, a form of phagocytosis. [33]

  7. Heterotroph - Wikipedia

    en.wikipedia.org/wiki/Heterotroph

    Today, many heterotrophs and autotrophs also utilize mutualistic relationships that provide needed resources to both organisms. [28] One example of this is the mutualism between corals and algae, where the former provides protection and necessary compounds for photosynthesis while the latter provides oxygen. [29]

  8. Is it ethical to use animals as organ farms for humans? - AOL

    www.aol.com/news/ethical-animals-organ-farms...

    Human lives are simply more valuable than animal lives “I can’t think of any reason to oppose this approach — assuming safety and efficacy — unless one is an animal-rights believer who ...

  9. Chemotroph - Wikipedia

    en.wikipedia.org/wiki/Chemotroph

    Iron has many existing roles in biology not related to redox reactions; examples include iron–sulfur proteins, hemoglobin, and coordination complexes. Iron has a widespread distribution globally and is considered one of the most abundant in the Earth's crust, soil, and sediments. [11] Iron is a trace element in marine environments. [11]