Search results
Results From The WOW.Com Content Network
In medicine, hydrostatic pressure in blood vessels is the pressure of the blood against the wall. It is the opposing force to oncotic pressure. In capillaries, hydrostatic pressure (also known as capillary blood pressure) is higher than the opposing “colloid osmotic pressure” in blood—a “constant” pressure primarily produced by ...
Turgor pressure is the force within the cell that pushes the plasma membrane against the cell wall. [1]It is also called hydrostatic pressure, and is defined as the pressure in a fluid measured at a certain point within itself when at equilibrium. [2]
A specialized case of hydrostatic stress contains isotropic compressive stress, which changes only in volume, but not in shape. [1] Pure hydrostatic stress can be experienced by a point in a fluid such as water. It is often used interchangeably with "mechanical pressure" and is also known as confining stress, particularly in the field of ...
The pressure exerted by a column of liquid of height h and density ρ is given by the hydrostatic pressure equation p = ρgh, where g is the gravitational acceleration. Fluid density and local gravity can vary from one reading to another depending on local factors, so the height of a fluid column does not define pressure precisely.
static pressure + dynamic pressure = total pressure. This simplified form of Bernoulli's equation is fundamental to an understanding of the design and operation of ships, low speed aircraft, and airspeed indicators for low speed aircraft – that is aircraft whose maximum speed will be less than about 30% of the speed of sound .
The hydrostatic equilibrium pertains to hydrostatics and the principles of equilibrium of fluids. A hydrostatic balance is a particular balance for weighing substances in water. Hydrostatic balance allows the discovery of their specific gravities. This equilibrium is strictly applicable when an ideal fluid is in steady horizontal laminar flow ...
Pressure in water and air. Pascal's law applies for fluids. Pascal's principle is defined as: A change in pressure at any point in an enclosed incompressible fluid at rest is transmitted equally and undiminished to all points in all directions throughout the fluid, and the force due to the pressure acts at right angles to the enclosing walls.
This type of stress may be called isotropic normal or just isotropic; if it is compressive, it is called hydrostatic pressure or just pressure. Gases by definition cannot withstand tensile stresses, but some liquids may withstand very large amounts of isotropic tensile stress under some circumstances. see Z-tube.