Search results
Results From The WOW.Com Content Network
One can standardize statistical errors (especially of a normal distribution) in a z-score (or "standard score"), and standardize residuals in a t-statistic, or more generally studentized residuals. In univariate distributions
The general regression model with n observations and k explanators, the first of which is a constant unit vector whose coefficient is the regression intercept, is = + where y is an n × 1 vector of dependent variable observations, each column of the n × k matrix X is a vector of observations on one of the k explanators, is a k × 1 vector of true coefficients, and e is an n× 1 vector of the ...
These deviations are called residuals when the calculations are performed over the data sample that was used for estimation (and are therefore always in reference to an estimate) and are called errors (or prediction errors) when computed out-of-sample (aka on the full set, referencing a true value rather than an estimate). The RMSD serves to ...
R 2 = 0.998, and norm of residuals = 0.302. If all values of y are multiplied by 1000 (for example, in an SI prefix change), then R 2 remains the same, but norm of residuals = 302. Another single-parameter indicator of fit is the RMSE of the residuals, or standard deviation of the residuals. This would have a value of 0.135 for the above ...
If the errors are independent and normally distributed with expected value 0 and variance σ 2, then the probability distribution of the ith externally studentized residual () is a Student's t-distribution with n − m − 1 degrees of freedom, and can range from to +.
In ordinary least squares, the definition simplifies to: =, =, where the numerator is the residual sum of squares (RSS). When the fit is just an ordinary mean, then χ ν 2 {\displaystyle \chi _{\nu }^{2}} equals the sample variance , the squared sample standard deviation .
This page was last edited on 13 October 2024, at 13:49 (UTC).; Text is available under the Creative Commons Attribution-ShareAlike 4.0 License; additional terms may apply.
Eugene F. Fama and James D. MacBeth (1973) demonstrated that the residuals of risk-return regressions and the observed "fair game" properties of the coefficients are consistent with an "efficient capital market" (quotes in the original). [2] Note that Fama MacBeth regressions provide standard errors corrected only for cross-sectional ...