Search results
Results From The WOW.Com Content Network
Maxwell's equations, ... Maxwell first used the equations to propose that light is an electromagnetic phenomenon. ... (meaning that its form follows from a definition).
[24] [25] Maxwell deals with the motion-related aspect of electromagnetic induction, v × B, in equation (77), which is the same as equation (D) in Maxwell's original equations as listed below. It is expressed today as the force law equation, F = q ( E + v × B ) , which sits adjacent to Maxwell's equations and bears the name Lorentz force ...
Maxwell's relations are a set of equations in thermodynamics which are derivable from the symmetry of second derivatives and from the definitions of the thermodynamic potentials. These relations are named for the nineteenth-century physicist James Clerk Maxwell .
James Clerk Maxwell FRS FRSE (13 June 1831 – 5 November 1879) was a Scottish physicist and mathematician [1] who was responsible for the classical theory of electromagnetic radiation, which was the first theory to describe electricity, magnetism and light as different manifestations of the same phenomenon.
The four modern Maxwell's equations, as laid down in a publication by Oliver Heaviside in 1884, had all appeared in Maxwell's 1861 paper. Heaviside however presented these equations in modern vector format using the nabla operator (∇) devised by William Rowan Hamilton in 1837, Of Maxwell's work, Albert Einstein wrote: [4]
Eighteen of Maxwell's twenty original equations can be vectorized into six equations, labeled to below, each of which represents a group of three original equations in component form. The 19th and 20th of Maxwell's component equations appear as and below, making a total of eight vector equations. These are listed below in Maxwell's original ...
The covariant formulation of classical electromagnetism refers to ways of writing the laws of classical electromagnetism (in particular, Maxwell's equations and the Lorentz force) in a form that is manifestly invariant under Lorentz transformations, in the formalism of special relativity using rectilinear inertial coordinate systems.
Albert Einstein (1931): "Before Maxwell people conceived of physical reality – in so far as it is supposed to represent events in nature – as material points, whose changes consist exclusively of motions, which are subject to total differential equations. After Maxwell they conceived physical reality as represented by continuous fields, not ...