When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Mechanical energy - Wikipedia

    en.wikipedia.org/wiki/Mechanical_energy

    General. Energy is a scalar quantity and the mechanical energy of a system is the sum of the potential energy (which is measured by the position of the parts of the system) and the kinetic energy (which is also called the energy of motion): [1][2] The potential energy, U, depends on the position of an object subjected to gravity or some other ...

  3. Work (thermodynamics) - Wikipedia

    en.wikipedia.org/wiki/Work_(thermodynamics)

    Thermodynamic work is one of the principal processes by which a thermodynamic system can interact with its surroundings and exchange energy.This exchange results in externally measurable macroscopic forces on the system's surroundings, which can cause mechanical work, to lift a weight, for example, [1] or cause changes in electromagnetic, [2] [3] [4] or gravitational [5] variables.

  4. Mechanical equivalent of heat - Wikipedia

    en.wikipedia.org/wiki/Mechanical_equivalent_of_heat

    The mechanical equivalent of heat was a concept that had an important part in the development and acceptance of the conservation of energy and the establishment of the science of thermodynamics in the 19th century. Its independent and simultaneous discovery by James Prescott Joule and by Julius Robert von Mayer led to a priority dispute.

  5. Thermodynamics - Wikipedia

    en.wikipedia.org/wiki/Thermodynamics

    Thermodynamics is a branch of physics that deals with heat, work, and temperature, and their relation to energy, entropy, and the physical properties of matter and radiation. The behavior of these quantities is governed by the four laws of thermodynamics, which convey a quantitative description using measurable macroscopic physical quantities ...

  6. First law of thermodynamics - Wikipedia

    en.wikipedia.org/wiki/First_law_of_thermodynamics

    v. t. e. The first law of thermodynamics is a formulation of the law of conservation of energy in the context of thermodynamic processes. The law distinguishes two principal forms of energy transfer, heat and thermodynamic work, that modify a thermodynamic system containing a constant amount of matter. The law also defines the internal energy ...

  7. List of thermodynamic properties - Wikipedia

    en.wikipedia.org/wiki/List_of_thermodynamic...

    List of thermodynamic properties. In thermodynamics, a physical property is any property that is measurable, and whose value describes a state of a physical system. Thermodynamic properties are defined as characteristic features of a system, capable of specifying the system's state. Some constants, such as the ideal gas constant, R, do not ...

  8. Gibbs free energy - Wikipedia

    en.wikipedia.org/wiki/Gibbs_free_energy

    C 6 H 6 (l) 124.5. 31.00. The standard Gibbs free energy of formation of a compound is the change of Gibbs free energy that accompanies the formation of 1 mole of that substance from its component elements, in their standard states (the most stable form of the element at 25 °C and 100 kPa). Its symbol is Δ fG ˚.

  9. Thermodynamic free energy - Wikipedia

    en.wikipedia.org/wiki/Thermodynamic_free_energy

    The free energy is the portion of any first-law energy that is available to perform thermodynamic work at constant temperature, i.e., work mediated by thermal energy. Free energy is subject to irreversible loss in the course of such work. [1] Since first-law energy is always conserved, it is evident that free energy is an expendable, second-law ...