Search results
Results From The WOW.Com Content Network
function Depth-Limited-Search-Backward(u, Δ, B, F) is prepend u to B if Δ = 0 then if u in F then return u (Reached the marked node, use it as a relay node) remove the head node of B return null foreach parent of u do μ ← Depth-Limited-Search-Backward(parent, Δ − 1, B, F) if μ null then return μ remove the head node of B return null
Depth-first search (DFS) is an algorithm for traversing or searching tree or graph data structures. The algorithm starts at the root node (selecting some arbitrary node as the root node in the case of a graph) and explores as far as possible along each branch before backtracking.
Notice in particular how the residual is calculated iteratively step-by-step, instead of anew every time: + = + = (+) = It is possibly true that = prematurely, which would bring numerical problems. However, for particular choices of p 0 , p 1 , p 2 , … {\displaystyle {\boldsymbol {p}}_{0},{\boldsymbol {p}}_{1},{\boldsymbol {p}}_{2},\ldots ...
Iterative-deepening-A* works as follows: at each iteration, perform a depth-first search, cutting off a branch when its total cost () = + exceeds a given threshold.This threshold starts at the estimate of the cost at the initial state, and increases for each iteration of the algorithm.
The algorithm operates by building this tree one vertex at a time, from an arbitrary starting vertex, at each step adding the cheapest possible connection from the tree to another vertex. The algorithm was developed in 1930 by Czech mathematician VojtÄ›ch Jarník [ 1 ] and later rediscovered and republished by computer scientists Robert C. Prim ...
Kruskal's algorithm [1] finds a minimum spanning forest of an undirected edge-weighted graph.If the graph is connected, it finds a minimum spanning tree.It is a greedy algorithm that in each step adds to the forest the lowest-weight edge that will not form a cycle. [2]
If an equation can be put into the form f(x) = x, and a solution x is an attractive fixed point of the function f, then one may begin with a point x 1 in the basin of attraction of x, and let x n+1 = f(x n) for n ≥ 1, and the sequence {x n} n ≥ 1 will converge to the solution x.
An important application of divide and conquer is in optimization, [example needed] where if the search space is reduced ("pruned") by a constant factor at each step, the overall algorithm has the same asymptotic complexity as the pruning step, with the constant depending on the pruning factor (by summing the geometric series); this is known as ...