Ad
related to: discrete logarithm definition physics science examples problemsstudy.com has been visited by 100K+ users in the past month
Search results
Results From The WOW.Com Content Network
For example, log 10 10000 = 4, and log 10 0.001 = −3. These are instances of the discrete logarithm problem. Other base-10 logarithms in the real numbers are not instances of the discrete logarithm problem, because they involve non-integer exponents. For example, the equation log 10 53 = 1.724276… means that 10 1.724276… = 53.
Such problems are called NP-intermediate problems. The graph isomorphism problem, the discrete logarithm problem, and the integer factorization problem are examples of problems believed to be NP-intermediate. They are some of the very few NP problems not known to be in P or to be NP-complete.
2 Example. 3 Complexity. ... Pollard's rho algorithm for logarithms is an algorithm introduced by John Pollard in 1978 to solve the discrete logarithm problem, ...
However, in general settings, the logarithm tends to be a multi-valued function. For example, the complex logarithm is the multi-valued inverse of the complex exponential function. Similarly, the discrete logarithm is the multi-valued inverse of the exponential function in finite groups; it has uses in public-key cryptography.
ECC2K-108, involving taking a discrete logarithm on a Koblitz curve over a field of 2 108 elements. The prize was awarded on 4 April 2000 to a group of about 1300 people represented by Robert Harley. They used a parallelized Pollard rho method with speedup. ECC2-109, involving taking a discrete logarithm on a curve over a field of 2 109 ...
The hidden subgroup problem (HSP) is a topic of research in mathematics and theoretical computer science. The framework captures problems such as factoring , discrete logarithm , graph isomorphism , and the shortest vector problem .
In computational number theory and computational algebra, Pollard's kangaroo algorithm (also Pollard's lambda algorithm, see Naming below) is an algorithm for solving the discrete logarithm problem. The algorithm was introduced in 1978 by the number theorist John M. Pollard , in the same paper as his better-known Pollard's rho algorithm for ...
In computational number theory, the index calculus algorithm is a probabilistic algorithm for computing discrete logarithms.Dedicated to the discrete logarithm in (/) where is a prime, index calculus leads to a family of algorithms adapted to finite fields and to some families of elliptic curves.