Search results
Results From The WOW.Com Content Network
More generally, one may define upper bound and least upper bound for any subset of a partially ordered set X, with “real number” replaced by “element of X ”. In this case, we say that X has the least-upper-bound property if every non-empty subset of X with an upper bound has a least upper bound in X.
There is a corresponding greatest-lower-bound property; an ordered set possesses the greatest-lower-bound property if and only if it also possesses the least-upper-bound property; the least-upper-bound of the set of lower bounds of a set is the greatest-lower-bound, and the greatest-lower-bound of the set of upper bounds of a set is the least ...
More generally, if f is monotonic, then the least fixpoint of f is the stationary limit of f α (0), taking α over the ordinals, where f α is defined by transfinite induction: f α+1 = f (f α) and f γ for a limit ordinal γ is the least upper bound of the f β for all β ordinals less than γ. [4]
Thus, the infimum or meet of a collection of subsets is the greatest lower bound while the supremum or join is the least upper bound. In this context, the inner limit, lim inf X n, is the largest meeting of tails of the sequence, and the outer limit, lim sup X n, is the smallest joining of tails of the sequence. The following makes this precise.
A lattice is an abstract structure studied in the mathematical subdisciplines of order theory and abstract algebra.It consists of a partially ordered set in which every pair of elements has a unique supremum (also called a least upper bound or join) and a unique infimum (also called a greatest lower bound or meet).
Proof of the Extreme Value Theorem. By the boundedness theorem, f is bounded from above, hence, by the Dedekind-completeness of the real numbers, the least upper bound (supremum) M of f exists. It is necessary to find a point d in [a, b] such that M = f(d). Let n be a natural number. As M is the least upper bound, M – 1/n is not an upper ...
Part of what this argument shows is that there is a least upper bound of the sequence 0.9, 0.99, 0.999, etc.: the smallest number that is greater than all of the terms of the sequence. One of the axioms of the real number system is the completeness axiom, which states that every bounded sequence has a least upper bound.
Similarly, a function g defined on domain D and having the same codomain (K, ≤) is an upper bound of f, if g(x) ≥ f (x) for each x in D. The function g is further said to be an upper bound of a set of functions, if it is an upper bound of each function in that set.