When.com Web Search

  1. Ad

    related to: laplace transforms pauls online notes differential equations free

Search results

  1. Results From The WOW.Com Content Network
  2. Laplace transform - Wikipedia

    en.wikipedia.org/wiki/Laplace_transform

    In mathematics, the Laplace transform, named after Pierre-Simon Laplace (/ l ə ˈ p l ɑː s /), is an integral transform that converts a function of a real variable (usually , in the time domain) to a function of a complex variable (in the complex-valued frequency domain, also known as s-domain, or s-plane).

  3. List of Laplace transforms - Wikipedia

    en.wikipedia.org/wiki/List_of_Laplace_transforms

    The following is a list of Laplace transforms for many common functions of a single variable. [1] The Laplace transform is an integral transform that takes a function of a positive real variable t (often time) to a function of a complex variable s (complex angular frequency ).

  4. Laplace transform applied to differential equations - Wikipedia

    en.wikipedia.org/wiki/Laplace_transform_applied...

    In mathematics, the Laplace transform is a powerful integral transform used to switch a function from the time domain to the s-domain. The Laplace transform can be used in some cases to solve linear differential equations with given initial conditions. First consider the following property of the Laplace transform:

  5. Integro-differential equation - Wikipedia

    en.wikipedia.org/wiki/Integro-differential_equation

    Consider the following second-order problem, ′ + + = () =, where = {,, <is the Heaviside step function.The Laplace transform is defined by, = {()} = ().Upon taking term-by-term Laplace transforms, and utilising the rules for derivatives and integrals, the integro-differential equation is converted into the following algebraic equation,

  6. Lists of integrals - Wikipedia

    en.wikipedia.org/wiki/Lists_of_integrals

    An even larger, multivolume table is the Integrals and Series by Prudnikov, Brychkov, and Marichev (with volumes 1–3 listing integrals and series of elementary and special functions, volume 4–5 are tables of Laplace transforms).

  7. Integral transform - Wikipedia

    en.wikipedia.org/wiki/Integral_transform

    As an example of an application of integral transforms, consider the Laplace transform. This is a technique that maps differential or integro-differential equations in the "time" domain into polynomial equations in what is termed the "complex frequency" domain. (Complex frequency is similar to actual, physical frequency but rather more general.

  8. Classical control theory - Wikipedia

    en.wikipedia.org/wiki/Classical_control_theory

    To counteract this problem, classical control theory uses the Laplace transform to change an Ordinary Differential Equation (ODE) in the time domain into a regular algebraic polynomial in the frequency domain. Once a given system has been converted into the frequency domain it can be manipulated with greater ease.

  9. Operational calculus - Wikipedia

    en.wikipedia.org/wiki/Operational_calculus

    The key element of the operational calculus is to consider differentiation as an operator p = ⁠ d / dt ⁠ acting on functions.Linear differential equations can then be recast in the form of "functions" F(p) of the operator p acting on the unknown function equaling the known function.