When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Knowledge graph embedding - Wikipedia

    en.wikipedia.org/wiki/Knowledge_graph_embedding

    The use of deep learning for knowledge graph embedding has shown good predictive performance even if they are more expensive in the training phase, data-hungry, and often required a pre-trained embedding representation of knowledge graph coming from a different embedding model. [1] [5]

  3. Vision transformer - Wikipedia

    en.wikipedia.org/wiki/Vision_transformer

    After such a ViT-VQGAN is trained, it can be used to code an arbitrary image into a list of symbols, and code an arbitrary list of symbols into an image. The list of symbols can be used to train into a standard autoregressive transformer (like GPT), for autoregressively generating an image.

  4. ELMo - Wikipedia

    en.wikipedia.org/wiki/ELMo

    ELMo (embeddings from language model) is a word embedding method for representing a sequence of words as a corresponding sequence of vectors. [1] It was created by researchers at the Allen Institute for Artificial Intelligence , [ 2 ] and University of Washington and first released in February, 2018.

  5. Sentence embedding - Wikipedia

    en.wikipedia.org/wiki/Sentence_embedding

    In practice however, BERT's sentence embedding with the [CLS] token achieves poor performance, often worse than simply averaging non-contextual word embeddings. SBERT later achieved superior sentence embedding performance [8] by fine tuning BERT's [CLS] token embeddings through the usage of a siamese neural network architecture on the SNLI dataset.

  6. Word embedding - Wikipedia

    en.wikipedia.org/wiki/Word_embedding

    In natural language processing, a word embedding is a representation of a word. The embedding is used in text analysis.Typically, the representation is a real-valued vector that encodes the meaning of the word in such a way that the words that are closer in the vector space are expected to be similar in meaning. [1]

  7. Feature learning - Wikipedia

    en.wikipedia.org/wiki/Feature_learning

    The model has two possible training schemes to produce word vector representations, one generative and one contrastive. [27] The first is word prediction given each of the neighboring words as an input. [28] The second is training on the representation similarity for neighboring words and representation dissimilarity for random pairs of words. [10]

  8. Word2vec - Wikipedia

    en.wikipedia.org/wiki/Word2vec

    Word2vec is a group of related models that are used to produce word embeddings.These models are shallow, two-layer neural networks that are trained to reconstruct linguistic contexts of words.

  9. Contrastive Language-Image Pre-training - Wikipedia

    en.wikipedia.org/wiki/Contrastive_Language-Image...

    Each was trained for 32 epochs. The largest ResNet model took 18 days to train on 592 V100 GPUs. The largest ViT model took 12 days on 256 V100 GPUs. All ViT models were trained on 224x224 image resolution. The ViT-L/14 was then boosted to 336x336 resolution by FixRes, [29] resulting in a model. [note 4] They found this was the best-performing ...