Search results
Results From The WOW.Com Content Network
In numerical linear algebra, the Jacobi method (a.k.a. the Jacobi iteration method) is an iterative algorithm for determining the solutions of a strictly diagonally dominant system of linear equations. Each diagonal element is solved for, and an approximate value is plugged in. The process is then iterated until it converges.
The Jacobi symbol is a generalization of the Legendre symbol. Introduced by Jacobi in 1837, [ 1 ] it is of theoretical interest in modular arithmetic and other branches of number theory , but its main use is in computational number theory , especially primality testing and integer factorization ; these in turn are important in cryptography .
Symbolab is an answer engine [1] that provides step-by-step solutions to mathematical problems in a range of subjects. [2] It was originally developed by Israeli start-up company EqsQuest Ltd., under whom it was released for public use in 2011. In 2020, the company was acquired by American educational technology website Course Hero. [3] [4]
The Jacobi method is a simple relaxation method. The Gauss–Seidel method is an improvement upon the Jacobi method. Successive over-relaxation can be applied to either of the Jacobi and Gauss–Seidel methods to speed convergence. Multigrid methods
In matrix calculus, Jacobi's formula expresses the derivative of the determinant of a matrix A in terms of the adjugate of A and the derivative of A. [ 1 ] If A is a differentiable map from the real numbers to n × n matrices, then
In the theory of many-particle systems, Jacobi coordinates often are used to simplify the mathematical formulation. These coordinates are particularly common in treating polyatomic molecules and chemical reactions, [3] and in celestial mechanics. [4] An algorithm for generating the Jacobi coordinates for N bodies may be based upon binary trees. [5]
Each Givens rotation can be done in O(n) steps when the pivot element p is known. However the search for p requires inspection of all N ≈ 1 / 2 n 2 off-diagonal elements, which means this search dominates the overall complexity and pushes the computational complexity of a sweep in the classical Jacobi algorithm to ().
Modified Richardson iteration is an iterative method for solving a system of linear equations.Richardson iteration was proposed by Lewis Fry Richardson in his work dated 1910.