When.com Web Search

  1. Ads

    related to: boundary of a manifold shape definition science worksheet 1 grade 5 dll

Search results

  1. Results From The WOW.Com Content Network
  2. Manifold - Wikipedia

    en.wikipedia.org/wiki/Manifold

    A manifold with boundary is a manifold with an edge. For example, a sheet of paper is a 2-manifold with a 1-dimensional boundary. The boundary of an -manifold with boundary is an ()-manifold. A disk (circle plus interior) is a 2-manifold with boundary. Its boundary is a circle, a 1-manifold.

  3. Boundary (topology) - Wikipedia

    en.wikipedia.org/wiki/Boundary_(topology)

    In topology and mathematics in general, the boundary of a subset S of a topological space X is the set of points in the closure of S not belonging to the interior of S. An element of the boundary of S is called a boundary point of S. The term boundary operation refers to finding or taking the boundary of a set.

  4. Exterior calculus identities - Wikipedia

    en.wikipedia.org/wiki/Exterior_calculus_identities

    The boundary of a manifold is a manifold , which has dimension . An orientation on M {\displaystyle M} induces an orientation on ∂ M {\displaystyle \partial M} . We usually denote a submanifold by Σ ⊂ M {\displaystyle \Sigma \subset M} .

  5. Genus (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Genus_(mathematics)

    A Seifert surface of a knot is however a manifold with boundary, the boundary being the knot, i.e. homeomorphic to the unit circle. The genus of such a surface is defined to be the genus of the two-manifold, which is obtained by gluing the unit disk along the boundary.

  6. Eta invariant - Wikipedia

    en.wikipedia.org/wiki/Eta_invariant

    Michael Francis Atiyah, H. Donnelly, and I. M. Singer defined the signature defect of the boundary of a manifold as the eta invariant, and used this to show that Hirzebruch's signature defect of a cusp of a Hilbert modular surface can be expressed in terms of the value at s=0 or 1 of a Shimizu L-function.

  7. Classification of manifolds - Wikipedia

    en.wikipedia.org/wiki/Classification_of_manifolds

    There is a unique connected 0-dimensional manifold, namely the point, and disconnected 0-dimensional manifolds are just discrete sets, classified by cardinality. They have no geometry, and their study is combinatorics. A connected compact 1-dimensional manifold without boundary is homeomorphic (or diffeomorphic if it is smooth) to the circle.

  8. Atlas (topology) - Wikipedia

    en.wikipedia.org/wiki/Atlas_(topology)

    In mathematics, particularly topology, an atlas is a concept used to describe a manifold. An atlas consists of individual charts that, roughly speaking, describe individual regions of the manifold. In general, the notion of atlas underlies the formal definition of a manifold and related structures such as vector bundles and other fiber bundles.

  9. (G,X)-manifold - Wikipedia

    en.wikipedia.org/wiki/(G,X)-manifold

    In geometry, if X is a manifold with an action of a topological group G by analytical diffeomorphisms, the notion of a (G, X)-structure on a topological space is a way to formalise it being locally isomorphic to X with its G-invariant structure; spaces with a (G, X)-structure are always manifolds and are called (G, X)-manifolds.