Search results
Results From The WOW.Com Content Network
The weighted arithmetic mean is similar to an ordinary arithmetic mean (the most common type of average), except that instead of each of the data points contributing equally to the final average, some data points contribute more than others.
It is a measure used to evaluate the performance of regression or forecasting models. It is a variant of MAPE in which the mean absolute percent errors is treated as a weighted arithmetic mean. Most commonly the absolute percent errors are weighted by the actuals (e.g. in case of sales forecasting, errors are weighted by sales volume). [3]
UPGMA (unweighted pair group method with arithmetic mean) is a simple agglomerative (bottom-up) hierarchical clustering method. It also has a weighted variant, WPGMA , and they are generally attributed to Sokal and Michener .
A weighted average, or weighted mean, is an average in which some data points count more heavily than others in that they are given more weight in the calculation. [6] For example, the arithmetic mean of 3 {\displaystyle 3} and 5 {\displaystyle 5} is 3 + 5 2 = 4 {\displaystyle {\frac {3+5}{2}}=4} , or equivalently 3 ⋅ 1 2 + 5 ⋅ 1 2 = 4 ...
[citation needed] One such algorithm uses a weighted average of the k nearest neighbors, weighted by the inverse of their distance. This algorithm works as follows: This algorithm works as follows: Compute the Euclidean or Mahalanobis distance from the query example to the labeled examples.
The method of mean weighted residuals solves (,,, …,) = by imposing that the degrees of freedom are such that: ((,,, …,),) =is satisfied. Where the inner product (,) is the standard function inner product with respect to some weighting function () which is determined usually by the basis function set or arbitrarily according to whichever weighting function is most convenient.
Kernel average smoother example. The idea of the kernel average smoother is the following. For each data point X 0, choose a constant distance size λ (kernel radius, or window width for p = 1 dimension), and compute a weighted average for all data points that are closer than to X 0 (the closer to X 0 points get higher weights).
The average cost is computed by dividing the total cost of goods available for sale by the total units available for sale. This gives a weighted-average unit cost that is applied to the units in the ending inventory. There are two commonly used average cost methods: Simple weighted-average cost method and perpetual weighted-average cost method. [2]